首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)2+(b1χ2+b2χ2+b3χ3)2, 记 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)2+(b1χ2+b2χ2+b3χ3)2, 记 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
admin
2016-05-09
81
问题
设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
2
+b
2
χ
2
+b
3
χ
3
)
2
,
记
(1)证明二次型f对应的矩阵为2αα
T
+ββ
T
;
(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
=2(χ
1
,χ
2
,χ
3
)[*](a
1
,a
2
,a
3
)[*]+(χ
1
,χ
2
,χ
3
)[*](b
1
,b
2
,b
3
)[*] =(χ
1
,χ
2
,χ
3
)(2αα
T
)[*]+(χ
1
,χ
2
,χ
3
)(ββ
T
)[*] =(χ
1
,χ
2
,χ
3
)(2αα
T
+ββ
T
)[*] 所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)设A=2αα
T
+ββ
T
,由|α|=1,β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量. 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值.故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/6gw4777K
0
考研数学一
相关试题推荐
设f(χ)=则f(χ)在χ=0处().
A、 B、 C、 D、 B
设向量=(1,1,﹣1)T是A=的一个特征向量判断A是否相似于对角矩阵,说明理由
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
向量组a1,a2…,as线性无关的充要条件是().
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
关于性激素的说法,下列哪项是正确的
会计主体必须是独立法人。()
基金信息披露允许的行为是()。
定距尺度的计量结果可以()。
关于各级标准的批准发布单位,下列说法不正确的是()。
在西方分层理论中,常常按照()将社会成员划分成不同的社会身份群体。
受教育者(华南师范大学2013年研)
下面程序的输出结果是()。#includeclassexample{inta;public:example(intb){a=b++;}voidprint(){a=a+1;
______preparationswerebeingmadeforthePrimeMinister’sofficialvisittothefouruniversities.
Theautomobilehasmanyadvantages.Aboveall,it【B1】______peoplefreedomtogowheretheywanttogowhentheywanttogothere
最新回复
(
0
)