首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2018-11-21
92
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点;
(Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(一∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
即证:f(x)=
在[0,2π)存在两个相异零点.只要证
在[0,2π)有两个极值点.注意:F(x)是周期为2π的周期函数,F(x)在[0,2π)的最大与最小值点也是F(x)在(一∞,+∞)上的最大与最小值点,因而必是极值点.
转载请注明原文地址:https://kaotiyun.com/show/6pg4777K
0
考研数学一
相关试题推荐
设X~B(3,p),Y~B(2,p),已知P(X≥1)=,则P(Y<1)=____________.
求
向量v=xi+yi+zk穿过封闭圆锥曲面z2=x2+y2,0≤z≤h的流量等于___________.
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
求方程组的通解,并求满足x2=x3的全部解.
设α1=[1,0,0,λ1]T,α2=[1,2,0,λ2]T,α3=[一1,2,一3,λ3]T,α4=[一2,1,5,λ4]T,其中λ1,λ2,λ3,λ4是任意实数,则().
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n则四阶行列式|α3,α2,α1,β1+β2|等于().
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求
设函数f(x)=1-,数列{xn}满足0<x1<1且xn+1=f(xn)。证明f(x)在(-1,1)上有且只有一个零点;
设n为正整数,f(x)=xn+x一1.证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
随机试题
计量标准的主要计量特性包括哪几个方面?
关于静息电位的叙述,下列哪项是正确的
手术中输血后,发现术野渗血不止和低血压,最可能是出现了哪种输血并发症
肺痨阴虚火旺型常用方剂是
对于肠道传染病起主导作用的预防措施是()
关于缺血性脑卒中急性期的治疗,说法不正确的是
根据代理商是否有权处理法律行为划分,代理商可划分为()。
由于中国代表团没有透彻地理解奥运会的游戏规则,因此在伦敦奥运会上,无论是对赛制赛规的批评建议,还是对裁判执法的质疑,前后几度申诉都没有取得成功。为使上述推理成立,必须补充以下哪一项作为前提?
甲、乙、丙、丁、戊分别住在同一个小区的1、2、3、4、5号房子内。现已知:①甲与乙不是邻居;②乙的房号比丁小;③丙住的房号数是双数;④甲的房号比戊大3号。根据上述条件.丁所住的房号是:
SocialmediapresentschallengetouniversitiesUniversitieshaveanewweaponinthebattletoprotecttheirreputations:thef
最新回复
(
0
)