首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设.f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设.f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
admin
2018-05-25
43
问题
设.f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤
|f(x)|.证明:f(x)≡0,x∈[0,1].
选项
答案
因为f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,从而|f(x)|在[0,1]上连续,故|f(x)|在[0,1]上取到最大值M,即存在x
0
∈[0,1],使得|f(x
0
)|=M. 当x
0
=0时,则M=0,所以f(x)≡0,x∈[0,1]; 当x
0
≠0时, M=|f(x
0
)|=|f(x
0
)一f(0)|=|f’(ξ)|x
0
≤|f’(ξ)| [*] 其中ξ∈(0,x
0
),故M=0,于是f(x)≡0,x∈[0,1].
解析
转载请注明原文地址:https://kaotiyun.com/show/7EW4777K
0
考研数学三
相关试题推荐
=()
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设X关于y的条件概率密度为
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知F(0)=,则()
设随机变量X的分布函数为F(x)=A+Barctanx,-∞<x<+∞.求:(1)系数A与B;(2)P{-1<X≤1};(3)X的概率密度.
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
求下列极限:
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
随机试题
在病例对照研究中,变量的的测量应尽可能的采用
下列关于牙颌面畸形的叙述哪项是错误的()
下图为深圳万科城市花园住宅组团,其设计采用的布置方法是:
机构如图,杆ED的点H由水平绳拉住,其上的销钉C置于杆AB的光滑直槽中,各杆重均不计。已知FP=10kN。销钉C处约束力的作用线与x轴正向所成的夹角为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
莎士比亚戏剧中体现的很多观点、态度和思想——莎士比亚本人是否赞同有待探究,但放在今天无论如何是难以接受的。其中确有赤裸裸的政治不正确之处,弄得一些改编作品简直就像在讨伐莎士比亚。不过,这些貌似不敬的行为反倒是帮了莎士比亚的大忙。因为这些莎士比亚原作的衍生作
决策支持系统通过它的输出接口产生报告、数据库查询结果和模型的模拟结果,这些结果又提供了对决策过程中哪项的支持?
在美国国防部的可信任计算机标准评估准则中,安全等级最高的是()。
下列关于IPS的描述中,正确的是()。
Wehavetoaskthemtoquittalkinginorderthatallpeoplepresentcouldhearusclearly.
最新回复
(
0
)