首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
admin
2019-07-12
59
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
因为ξ
1
≠ξ
2
,知ξ
1
-ξ
2
是Ax=0的非零解,故秩r(A)
*≠0,说
明有代数余子式A
ij
≠0,即丨A丨中有n-1阶子式非零.因此秩r(A)=n-1.那么n-r(A)=1,即Ax=0的基础解系仅含有一个非零解向量.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/A3J4777K
0
考研数学三
相关试题推荐
将展开成(x一2)的幂级数.
(1999年)设有微分方程y’一2y=φ(x),其中试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设A=,则在实数域上与A合同的矩阵为()
已知齐次线性方程组其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解。在有非零解时,求此方程组的一个基础解系。
(2004年)设随机变量X服从正态分布N(0,1),对给定的a∈(0,1),数ua满足P{x>ua)=a,若P{|X|<x}=a,则x等于()
(2016年)设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=()
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:绝对收敛.
设{un),{cn)为正项数列,证明:(1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散;(2)若对一切正整数n满足也收敛.
随机试题
在用支出法计算GDP时,不应计入GDP的项目是()
设函数f(χ)在(a,b)内有三阶导数,且f(χ1)=f(χ2)=f(χ3)=f(χ4),其中a<χ1<χ2<χ3<χ4<b,证明:在(a,b)内至少存在一点ξ,使得=0。
中性粒细胞增多最常见的原因是()
患者素有胃痛,近日因情志不遂而加重,现症见胃脘胀痛,痛连胁肋,嗳气后胃部胀痛可减轻,食欲不振,舌红苔薄白,脉弦。按照中医五行学说,与胃相对应的是()
管窥蠡测:坐井观天
职业作家甲是某市作协成员,于1998年完成职务作品中篇纪实报告文学,下列说法正确的是( )。
下列关于固定资产确定计税基础的表述中,符合企业所得税法律制度规定的有()。
“大家、方家、大方”都含有这样一个意思:学识渊博或专精于某种技艺的人。()
温带大陆性气候的典型区域是()。
以下选项中,没有编译错误的是
最新回复
(
0
)