首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
admin
2022-04-27
69
问题
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ;
(Ⅱ)在(Ⅰ)的基础上,取x
0
∈(e,ξ),令x
n
=1+2ln x
n-1
(n=1,2,…),证明:
x
n
=ξ.
选项
答案
(Ⅰ)令f(x)=x-1-2ln x,则f(e)=e-3<0,且 [*] 故由零点定理,可知f(x)=0在(e,+∞)内至少有已个实根. 又由于 [*] 故f(x)=0在(e,+∞)内有唯一实根,记为ξ. (Ⅱ)由(Ⅰ)知,当c∈(e,ξ)时,f(x)<0,即 1+2ln x>x, 故当e<x
0
<ξ时, x
1
=1+2ln x
0
>x
0
, x
1
=1+2ln x
0
<1+2ln ξ=ξ. 假设x
n
>x
n-1
,且x
n
<ξ,则有 x
n=1
=1+2ln x
n
>x
n
, x
n+1
=1+2ln x
n
<1+2ln ξ=ξ, 故由数学归纳法,可知{x
n
}单调增加有上界,故[*]x
n
存在,记[*]x
n
=A 对x
n
=1+2ln x
n-1
左右两端同时取极限,有A=1+2ln A.即A为方程x=1+2ln x的实根. 由(Ⅰ),可知[*]x
n
=A=ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ALR4777K
0
考研数学三
相关试题推荐
已知点A(3,-1,2),B(1,2,-4),C(-1,1,2),试求点D,使得以A,B,C,D为顶点的四边形为平行四边形.
判定下列级数和敛散性:
设向量a={3,-4,2},轴u的正向与三个坐标轴的正向构成相等的锐角,试求:(1)向量a在轴u上的投影;(2)向量a与轴u的夹角.
设总体X的概率密度为其中θ是未知参数(0
利用导数证明:当x>1时,
设总体X的密度函数为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.(I)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设,B=A-1,则B的伴随矩阵B*的所有元素之和等于________.
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
设f(x)在[—2,2]上具有连续的导数,且f(0)=0,证明:级数绝对收敛.
设f(x)=(-1)nanx2n+1满足f”(x)+f(x)=-2sinx,f’(0)=2.求an及的和.
随机试题
鼻头干燥色黑如烟煤状多为
A.变量值间呈倍数关系的偏态分布B.表达同质计量资料的对称分布C.偏态分布资料或末端无界的资料,或频数分布不明资料D.表达同质计量资料的偏态分布E.变量值间无信数关系的正态分布
女,9岁,5天前突然右髋疼痛,并有高热。体温5℃,脉搏110次/分,白细胞22×109/L,中性98%.,血沉30mm/第一小时末。右髋关节肿胀,不敢活动,考虑为( )。
滴定分析指示剂有()。
对建设项目试生产与生产运营准备工作的咨询服务内容包括()。
关于建设工程等步距异节奏流水施工特点的说法,正确的是()。
地域管辖包括( )。
促进个体发展从潜在的可能状态转向现实状态的决定性因素是()
对于“既要改善人民生活,又要艰苦奋斗”有几种看法,你认为下列看法哪些是正确的?()
近代沙俄侵占了中国北方和西北方哪些领土?其重大危害是什么?
最新回复
(
0
)