首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~U(1,θ),参数θ>1未知,X1,X2,…,Xn是来自总体X的简单随机样本。 (Ⅰ)求θ的矩估计量和极大似然估计量; (Ⅱ)求上述两个估计量的数学期望。
设总体X~U(1,θ),参数θ>1未知,X1,X2,…,Xn是来自总体X的简单随机样本。 (Ⅰ)求θ的矩估计量和极大似然估计量; (Ⅱ)求上述两个估计量的数学期望。
admin
2019-11-06
40
问题
设总体X~U(1,θ),参数θ>1未知,X
1
,X
2
,…,X
n
是来自总体X的简单随机样本。
(Ⅰ)求θ的矩估计量和极大似然估计量;
(Ⅱ)求上述两个估计量的数学期望。
选项
答案
总体X~U(1,θ),其概率密度为 [*] (Ⅰ)由[*]解得[*]故θ的矩估计量为[*]似然函数 [*] L(θ)递减,又X
1
,X
2
,…,X
n
∈(1,θ),故θ的极大似然估计量为[*] (Ⅱ)[*] 而[*]=max{X
1
,X
2
,…,X
n
}的分布函数 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AUS4777K
0
考研数学一
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有
设一均匀物体由两曲面x2+y2=az.z=2a-(a>0)所围成,求此物体质心.
[*]
设y=f(x)的反函数为x=φ(y),利用复合函数求导法则,
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,求产生故障仪器的台数X的数学期望和方差.
设随机变量X的期望与方差都存在,且E(X2)=0,则P{X=0}=____________.
设要使得A正定,a应该满足的条件是
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
随机试题
我国慢性肾衰竭最常见的病因为
A.温中健脾B.导滞和胃C.疏肝理气,和胃止痛D.疏肝泄热,和胃止痛E.温中散寒,和胃止痛某患者,症见上腹部胀痛,痛连胁肋,生气时胃痛加重。治疗原则为
钢筋混凝土梁在正常使用荷载下,下列叙述是正确的是()。
某水利工程中饱和无黏性土的相对密度为78%,位于地震设防烈度8度地区,水平地震动峰值加速度为0.30g,则液化临界相对密度(Dr)cr和液化判别情况应为下列()项。
有偿使用建设用地分为()等方式获得。
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
娟娟一闻到百合花的香味,马上说出花的名称。这种心理现象是()。
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
在函数中,可以用auto、extem、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
TheEconomistIntelligenceUnit(EIU)earnestlyattemptstomeasurewhichcountrywillprovidethebestopportunitiesforahealth
最新回复
(
0
)