首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)b1,…,br能由向量组(Ⅱ)a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(I)b1,…,br能由向量组(Ⅱ)a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2018-12-19
37
问题
设向量组(I)b
1
,…,b
r
能由向量组(Ⅱ)a
1
,…,a
s
线性表示为(b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(n),r(K)}, 结合向量组(I)b
1
,b
2
,…,b
r
线性无关知r(B)=r,故,r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}≤r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性 已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有[*] 由矩阵秩的性质 [*] 即r(B)=r(K)=r,因此向量组(I)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/BVj4777K
0
考研数学二
相关试题推荐
设证明f(x)是以π为周期的周期函数;
设函数且λ>0,则∫-∞+∞xf(x)dx=__________.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当F(x)的最小值为f(a)一a2一1时,求函数f(x).
(2005年)如图,C1和C2分别是y=(1+eχ)和y=eχ的图像,过点(0,1)的曲线C3是一单调增函数的图像,过C2上任一点M(χ,y)分别作垂直于χ轴和y轴的直线lχ和ly.记C1,C2与lχ所围图形的面积为S1(χ);C2,C3与ly所围图形的面
(2007年)已知函数f(u)具有二阶导数,且f′(0)=1,函数y=y(χ)由方程y=χey-1=1所确定.设z=f(lny-sinχ),求
(2000年)已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
(2006年)微分方程y′=的通解是_______.
(1999年)微分方程y〞-4y=e2χ的通解为________.
求微分方程(3xx+2xy一yx)dx+(x2一2xy)dy=0的通解.
若函数f(x)=asinx+处取得极值,则a=___________。
随机试题
脊柱的生理弯曲是()
计算机系统内的系统总线是()。[2012年真题]
为了应对风险自担,可以采取事先制订好后备措施,主要有()。
仲裁庭的人数通常为( )人。
下列各项中,以“资产=负债+所有者权益”这一会计恒等式为理论依据的有()。
在计算速动比率时需要排除存货的影响,这样做的原因之一在于流动资产中()。
关于啤酒,下列说法正确的有()。
Windows桌面是指系统启动后的整个屏幕区域,主要由()组成。
【背景材料(大意)】受特殊计划生育政策、快速城市化和工业化进程中生育意愿迅速变化等多方面因素影响,我国正在进入快速的老龄化过程。截至2013年底,我国60周岁及以上人口20243万人,占总人口的14.9%,65周岁及以上人口13161万人,占总人
QQ是目前在中国使用很广的一种即时通讯工具,它基于因特网,可以方便人们随时随地进行在线交流。QQ由腾讯(Tencent)公司开发,其标志(logo)为可爱的小企鹅图像。QQ可以支持在线聊天、视频电话、文件传输、音乐、游戏、邮箱等多种功能。现在QQ已经成为世
最新回复
(
0
)