首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求: (1)EZ,DZ; (2)用切比雪夫不等式估计P{|Z|≥2}.
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求: (1)EZ,DZ; (2)用切比雪夫不等式估计P{|Z|≥2}.
admin
2018-09-20
43
问题
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为
,记Z=X+Y,求:
(1)EZ,DZ;
(2)用切比雪夫不等式估计P{|Z|≥2}.
选项
答案
(1)EZ=E(X+Y)=EX+EY=∫
-∞
+∞
xf(x)dx+∫
-∞
+∞
yf(一y)dy [*]∫
-∞
+∞
xf(x)dx+∫
+∞
-∞
(一u)f(u)(一du) =∫
-∞
+∞
xf(x)dx—∫
-∞
+∞
uf(u)du=0, DZ=D(X+Y)=DX+DY+2CoV(X,Y)=DX+DY+[*]. 又 DY=E(Y
2
)一(EY)
2
, 其中EY=一EX,E(Y
2
)=∫
-∞
+∞
y
2
f(-y)dy=∫
+∞
-∞
(一u)
2
f(u)(一du)=∫
-∞
+∞
u
2
f(u)du=E(X
2
), 则DY=E(X
2
)一(一EX)
2
=E(X
2
)一(EX)
2
=DX=1, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DtW4777K
0
考研数学三
相关试题推荐
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ);(Ⅱ)f(x)=exsinx
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y2=eX;(Ⅱ)Y2=-2lnX;(Ⅲ)Y3=;(Ⅳ)Y42=X2.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E-A2|=0.
设A2=A,A≠E(单位矩阵),证明:|A|=0.
设f(x)的原函数F(x)>0,且F(0)=1.当x≥0时有f(x)F(x)=sin22x,试求f(x).
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.求常数a;
设总体X~N(μ,σ2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令|Xi一μ|,求Y的数学期望与方差.
证明:∫0πxasinxdx.,其中a>0为常数.
设随机变量X的密度函数为f(x)=求常数A;
随机试题
顺序查找法适用于存储结构为()的线性表。
患者,56岁。绝经4年,近日来自带增多,色黄,偶有点滴出血,外阴灼热感,阴道检查:黏膜皱襞消失,有小出血点,宫颈光,宫体小,附件(-),该患者最可能的诊断是
门静脉高压症合并食管静脉曲张手术治疗的最主要目的是()。
下列关于交易数量发生错误的说法中,正确的是( )。
是根据贷款风险分类结果,对不同类别的贷款根据其内在损失程度或历史损失概率计提的贷款损失准备金。
课程改革的着眼点是()。
自2016年5月20日台湾地区新领导人就职以来,两岸制度化沟通和协商谈判机制中断。其根本原因在于()
•Lookatthestatementsbelowandatthefiveextractsfromanarticleaboutlossofcontroldownwardinmanagement.•Whicharti
Whydoesalackofsleepcausepeopletogainweight?
WillChineseReplaceEnglish?ChineselanguagehasmanyadvantagesoverEuropeanlanguagesandthespeakerthinksChineseispos
最新回复
(
0
)