首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
admin
2014-06-11
44
问题
设α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设β,α
1
,α
2
,…,α
t
线性相关,令λβ+λ
1
α
1
+λ
2
α
2
+…+λ
t
α
t
=0, 因为α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解, 因此A(λβ+λ
1
α
1
+λ
2
α
2
+…+λ
t
α
t
)=λ(Aβ),因为Aβ≠0,所以λ=0, 因此β,α
1
,α
2
,…,α
t
线性无关,令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/F554777K
0
考研数学一
相关试题推荐
设A=(α1,α2,γ1),B=(α1,α2,γ2)皆为3阶矩阵,且|A|=2,|B|=3,则|3A-B|=().
设区域D={(x,y)||x|+|y|≤1},D1={(x,y)|0≤x≤1,0≤y≤1-x},则(xy+cosxy2)dxdy=().
设f(x)=则f(x)在x=1处().
设曲线L:y=f(x)位于第一象限,且经过点M0(1,3),P(x,y)为曲线L上的任一点,在[0,x]上,以f(x)为高的矩形面积与上以L为曲边的曲边梯形面积的三倍之差等于-x2.(Ⅰ)求f(x);(Ⅱ)求y=f(x)与x轴及x=2围成的区域绕x=3
一辆洒水车水箱为椭圆柱,底面椭圆短半轴长为1米(即上下高度为2米)、长半轴为2米.水箱长为4米,现水箱装水的深度为米.(Ⅰ)求水对底面椭圆的压力:(Ⅱ)从顶部将水全部抽出,求做功.
求极限
设向量组α1=(1,1,1,2)T,α2=(3,a+4,2a+5,a+7)T,α3=(4,6,8,10)T,α4=(2,3,2a+3,5)T;β=(0,1,3,6)T,求:a,b满足何种条件时,β不能由α1,α2,α3,α4线性表示;
已知3阶矩阵A满足∣A-E∣=∣A-2E∣=∣A+E∣=a,其中E为3阶单位矩阵.当a=2时,求行列式∣A+3E∣的值.
按下列要求举例:(1)一个有限集合(2)一个无限集合(3)一个空集(4)一个集合是另一个集合的子集
随机试题
对储油罐使用涂料涂刷时,必须按()的底漆、面漆配套品种施工。
建设中国特色社会主义人数最多、最基本的依靠力量是【】
寻寻觅觅,冷冷清清,凄凄惨惨戚戚。乍暖还寒时候,最难将息。三杯两盏淡酒,怎敌他、晚来风急!雁过也,正伤心,却是旧时相识。满地黄花堆积,憔悴损,如今有谁堪摘!守着窗儿,独自怎生得黑!梧桐更兼细雨,到黄昏、点点滴滴。这次第,怎一个愁字了得!这首词是怎样表
调剂使用医疗机构制剂的表述,正确的是
A.利水渗湿B.清热泻火C.温里散寒D.收敛固涩E.和中缓急涩味所示的效用是()。
公司应如实、完整地记录内幕信息在公开前的()等各环节所有内幕信息知情人名单,以及知情人知悉内幕信息的时间等相关档案,供公司自查和相关监管机构查询。Ⅰ.报告Ⅱ.传递Ⅲ.编制与审核Ⅳ.披露
在对道德两难故事“海因茨偷药”进行评判时,小明认为救妻子是丈夫应尽的义务,所以海因茨偷药是应该的。按照科尔伯格的道德发展阶段理论,小明的道德发展阶段处于()
行政赔偿请求人单独提起行政赔偿诉讼的,其诉讼时效自向赔偿义务机关递交赔偿请求书之日起为:()
数据库系统的核心是()。
TulipswereintroducedintoHollandbeforethe17thcenturybutitdidnottakelongfortheflowerstogainpopularityamongth
最新回复
(
0
)