首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
55
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/FgP4777K
0
考研数学三
相关试题推荐
设随机变量X的绝对值不大于1,且P{X=0}=,已知当X≠0时,X在其他取值范围内服从均匀分布,求X的分布函数F(x).
设随机变量X在区间(0,1)上服从均匀分布,在X=χ(O<χ<1)的条件下,随机变量y在区间(0,χ)上服从均匀分布.求:(Ⅰ)随机变量X和Y的联合概率密度;(Ⅱ)y的概率密度;(Ⅲ)概率P{X+Y>1}.
交换积分次序=_______.
设四次曲线y=aχ4+bχ3+cχ2+dχ+f经过点(0,0),并且点(3,2)是它的一个拐点.该曲线上点(0,0)与点(3,2)的切线交于点(2,4),则该四次曲线的方程为y=_______.
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是()
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m________________.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设求A-1.
证明:不等式:
随机试题
简述使用画图程序制作一幅图画的完整过程。
A.儿童接种卡介苗B.指导孕妇服用叶酸C.对传染病患者进行隔离D.宫颈癌的筛查E.糖尿病患者的自我管理属于第三极预防措施的是
甲诉乙民间借贷纠纷,二审法院终审判决乙返还甲借款本金、利息共计50万元。判决生效后,乙拒不履行义务,甲向一审法院申请强制执行。由于乙在银行的存款余额不足,执行人员对乙占有的一辆奥迪汽车采取了执行措施。在拍卖该汽车之前,公民丙向人民法院提出;该汽车的所有人是
拟建某工业项目,建设期2年,生产期10年,基础数据如下:1.第一年、第二年固定资产投资分别为2100万元、1200万元。2.第三年、第四年流动资金注入分别为550万元、350万元。3.预计正常生产年份的年销售收入为3500万元,经营
在项目组织的形式中,如果每个成员都接受项目经理和职能部门的双重领导,这种组织形式称为( )。
提前还款是指借款人具有一定偿还能力时,主动向贷款银行提出部分或全部提前偿还贷款的行为。()
某建设单位建设一热电厂,该单位委托甲工程监理公司对工程进行监理,委托乙施工单位作为项目的施工总承包单位,并决定向美国丙重型设备制造商订购发电设备。甲监理公司的总监理工程师在主持编制监理规划时,安排了一位专业监理工程师负责风险分析和相应监理规划内容
在真实财富概念基础上,建设社会将会是充满挑战的:它需要勇气、正义和智慧这样的高尚品德,也需要我们之间、后代之间、长辈之间、邻里之间以及政治家之间的严肃对话来决定何种前进道路能实现我们的福祉。对人类来说,重新界定金钱的性质,纠正金钱对我们生活的奴役,重塑金钱
如何减缓组织变革的阻力?
我同《刑法》对醉酒的人犯罪承担刑事责任的规定是()。
最新回复
(
0
)