首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-11=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
admin
2018-04-15
63
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
1=0,b=α
1
+α
2
+…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n+1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n=1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/FgX4777K
0
考研数学三
相关试题推荐
设有向量组α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,一1,5,10).则该向量组的极大无关组是【】
设f(0)=0,则f(x)在x=0可导的充要条件是
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=方程组(2E-A)X=0的一个解,|E+A|=0,则A=__________.
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xn.设E(Xi)=θ(i=1,2,…,n),问k1,k2,,…,kn应取何值,才能在使用估计θ时,无偏
设随机变量X~,Y~,且Cov(X,Y)=,则(X,Y)的联合分布律为________.
在线段(0,1)上随机投掷2个点,该两点的距离为X.试求:(Ⅰ)X的概率密度fX(x);(Ⅱ)X的数学期望EX.求原方程的通解.
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解,若α1+α2+α3=(0,6,3,9)T,2α1-α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为()
下列反常积分发散的是()
设函数Fn(x)=∫0xf(t)dt一x∈[0,+∞),其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;
设f(x)在x=0处连续,且则曲线y=f(x)在点(0,f(0))处的切线方程为________.
随机试题
为了便于记账,采用复式记账法时,对所设立的账户,都要固定记账方向。()
刺激胰岛β细胞释放胰岛素的药物是
一贯煎的功用是七宝美髯丹的功用是
根据技术指标理论,( )。
电信公司应缴纳的营业税税率为( )。
(2016·河北)素质教育的核心和灵魂是()
下面两题基于以下题干:一般人认为,一个人80岁和他在30岁时相比,理解和记忆能力都显著减退。最近的一项调查显示,80岁的老人和30岁的年轻人在玩麻将时所表现出的理解和记忆能力没有明显差别。因此:认为一个人到了80岁理解和记忆能力会显著减退的看法是站
从教育与社会的关系来看,决定教育规模和速度的是_________发展水平。
数字签名中基于公开密钥算法的签名称为通用签名。其利用了(1)。签名方首先利用其(2)对报文或报文的(3)加密,然后将密文作为签名,连同相应的明文一同传给验证方。验证方利用签名方的(4)对密文进行解密,并对这两个明文比较,由于不同的非对称密钥对同一报
ClimatechangethreatenssustainabledevelopmentandalleightMillenniumDevelopmentGoals.Theinternationalcommunityagreed
最新回复
(
0
)