首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A。
admin
2020-03-10
51
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(—1,2,—1)
T
,α
2
=(0,—1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(—1,2,—1)
T
+k
2
(0,—1,1)
T
,其中k
1
,k
2
是不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
—[*] 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
—1
=Q
T
,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FrD4777K
0
考研数学三
相关试题推荐
设A=。已知线性方程组Ax=b存在两个不同的解。求λ,a;
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=l}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
设D={(x,y)|(x一1)2+(y一1)2=2},计算二重积分(x+y)dσ。
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明:r(A*)=
已知幂级数an(x+2)n在x=0处收敛,在x=一4处发散,则幂级数an(x一3)n的收敛域为___________。
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则y'x(x0,y0)与f'y(x0,y0)都存在,且dz|(x0,y0)=f'x(x0,y0)Δx+f'y(x0,y0)Δy。
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:求λ的最大似然估计量λ。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:β的最大似然估计量。
设f(x)连续,且当x→0时,F(x)=∫0x(x2+1—cosx)f(t)dt是与x3等价的无穷小量,则f(0)=_________.
随机试题
下列有关内部控制缺陷的表述正确的有()。
TheFrencharejustlyproudoftheirrevolutionarytradition.【B16】_____________Saywhatyouwillabouttheoutcomes,buttheori
羊水中含量最多的有机物是
患者小便短赤灼热,尿血鲜红,心烦口渴,舌红,脉数。其证候是()
为了防止炎热地区的住宅夏季室内过热,以下()措施是不正确的。
FIDIC分包合同中,承包商以自己的名义就分包商的合理索赔要求向工程师递交索赔报告的事件可能是( )。
担保的方式包括()。
在劳动与技术教育课程中,学习日常烹饪属于()。
根据物权产生原因的不同,物权可分为()
Whentravelerslackanawarenessof【51】timeisregulatedinaforeigncountry,theycanexpecttofeelsomewhatdisoriented.Sin
最新回复
(
0
)