首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1 ,η2 ,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1 ,η2 ,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
admin
2018-09-25
74
问题
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
选项
答案
由r(A)=1,知AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程组AX=0的 解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Heg4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,若A2=A,证明A+E可逆.
设A=,则A*的值.
已知A=,则An=___________.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
已知an>0(n=1,2,…),且(-1)n-1an条件收敛,记bn=2a2n-1-a2n,则级数bn
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设n阶矩阵A=,证明行列式|A|=(n+1)an.
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
随机试题
鲍.瓦西里耶夫把战争悲剧与英雄主义气概相结合的经典之作是__________。
Charcot三联征发生的顺序是()。
大黄主治
工程项目周期中工作量最大、花费时间最长、涉及面最复杂的是()阶段。
针对工种特点,环境条件,项目部应从()等方面采取管理措施,确保项目安全施工。
现在很多人对快速发展的食品科技比较陌生,对食品从农田到餐桌的全过程知之甚少,因此对错误信息的辨识能力、对谣言的抵御能力十分有限。那些________________的谣言不仅影响消费信心,也给行业、产业带来直接的危害。强化食品安全科普传播_________
利息转化为收益的一般形态是因为利率能够事先确定。()
建设资源节约型、环境友好型社会的内在要求是
Itisdifficulttoguesswhathis______totheproposalwillbe.
Accordingtothepassage,aworkerprimarilyworksfor__________forthewelfareofthefirm.Bysaying"heisanunframedpic
最新回复
(
0
)