首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
admin
2017-07-26
39
问题
设A是n阶矩阵,ξ
1
,ξ
2
,…,ξ
t
是齐次方程组Ax=0的基础解系,若存在η
i
(i=1,2,…,t),使Aη
i
=ξ
i
,证明:向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
选项
答案
如果 k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
+l
1
η
1
+l
2
η
2
+…+l
t
η
t
=0 ① 用A左乘上式,并把Aξ
i
=0,Aη
i
=ξ
i
,i=1,2,…,t代入,得 l
1
ξ
1
+l
2
ξ
2
+…+l
t
ξ
t
=0. ② 因为ξ
1
,ξ
2
,…,ξ
t
是Ax=0的基础解系,它们线性无关,故对②必有 l
1
=0,l
2
=0,…,l
t
=0. 代入①式,有k
1
ξ
1
+k
2
ξ
2
+…+k
t
ξ
t
=0. 所以必有 k
1
=0,k
2
=0,…,k
t
=0. 即向量组ξ
1
,ξ
2
,…,ξ
t
,η
1
,η
2
,…,η
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/HyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
下列矩阵中两两相似的是
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征向量;
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(x∈(0,1)),证明:
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
随机试题
肾小管分泌的过程是
皮肤病最应忌的食物是
采用工料单价法编制单位工程预算时,在进行工料分析后紧接着的下一个步骤是()。【2015年真题】
【光大银行】2007出现的次贷危机大致经历的阶段有()
由非政府的民间金融组织确定的利率属于()。
2011年5月,甲、乙、丙合开了一间酒吧,甲以现金10万元出资,乙以其所有的房屋出资,丙以担任调酒师工作的劳务出资。2012年12月,酒吧欠酒厂5万元贷款。后甲因与其他合伙发生矛盾,于2013年2月退伙。上述债务应当()。
对下列农业知识的掌握有误的一项是()。
按照中国刑法规定,在我国领域外犯罪,不论罪行轻重,法定刑高低,都适用我国刑法的中国公民是()。
ItwasabadsignifsubtleshiftinthefarNorthAtlantic.For30years,watersoffsouthernGreenlandandIcelandhadbeengr
FrauundHerrMüllerwohneninMünchen,aber______KinderwohneninBonn.
最新回复
(
0
)