首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
admin
2021-02-25
51
问题
验证α
1
=(1,-1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(-9,-8,-13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且 x
11
α
1
+x
21
α
2
+x
31
α
3
=β
1
, x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得 [*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且 2α
1
+3α
2
-α
3
=β
1
, 3α
1
-3α
2
-2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://kaotiyun.com/show/Ii84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设X服从N(1,4),Y服从N(2,9),且X与Y相互独立,如果服从N(0,1),求常数a,b.
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
随机试题
可资鉴别恶性组织细胞病与实体瘤的是
门静脉高压症发生后的侧支循环有哪些?
在单一法人客户的财务状况分析中,财务比率内容主要包括()。
某会计师事务所拥有170万元的流动资产及90万元的流动负债,下列交易可以使该事务所流动比率下降的有()。
根据《劳动法》的规定;( )不属于劳动者权利。
设圆C与两圆(x+)2+y2=4,(x一)2+y2=4中的一个内切,另一个外切.已知点且P为L上动点,求|MP|—|FP|的最大值及此时点P的坐标.
试比较伊拉斯谟与拉伯雷、蒙旦的教育思想。
嘉禾医院安排3个男护士T、M、B和3个女护士H、S和J从周一到周六每个人工作1天。这6天中每天都有人工作。有6个人中的任何2个都不在同一天工作。(1)在M工作的那一天与J工作的那一天之间恰好有2个完整的工作日,且在一个工作周内,M总是在J之前工
ChinatoHelpEuropeDevelopGPSRivalChinaistocontributetoanewglobalsatellitenavigationsystembeingdevelopedby
Mirrorimagesisoftendifferentfromthe"feltimage".
最新回复
(
0
)