首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
admin
2021-02-25
49
问题
验证α
1
=(1,-1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(-9,-8,-13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且 x
11
α
1
+x
21
α
2
+x
31
α
3
=β
1
, x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得 [*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且 2α
1
+3α
2
-α
3
=β
1
, 3α
1
-3α
2
-2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://kaotiyun.com/show/Ii84777K
0
考研数学二
相关试题推荐
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
证明
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
求常数m,n,使得
设四阶矩阵B满足,求矩阵B.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
随机试题
活疫苗较灭活疫苗的优越性表现在()
向人民法院申请保全证据,不得迟于举证期限届满前()日。
________里认为优美能够“引起快感,并不和痛感夹杂在一起。”
社会进步曲折性和反复性的根本原因是()。
颗粒剂的粒度范围要筛上和筛下的颗粒不超过15%。()
患者热痢腹痛,里急后重,便下脓血,赤多白少,身热渴饮,舌红苔黄,脉弦数者。该证的治疗立法为
A.木通B.石韦C.金钱草D.萆薢E.茵陈
某大学图书馆进行装修改造,根据施工设计和使用功能的要求,采用大量的轻质隔墙。外墙采用建筑幕墙,承揽该装修改造工程的施工单位根据《建筑装饰装修工程质量验收规范》规定,对工程细部构造施工质量的控制做了大量的工作。该施工单位在轻质隔墙施工过程中提出以下技
()是阿根廷最具代表性的歌舞体裁。19世纪产生,男女对舞,突出顿步,即兴性强。
1公里,现需要在隧道两侧安装照明灯和广告牌,若起点、终点以及从起点到终点每隔50米都需要安装一盏照明灯,并且在相邻照明灯之间需要安装一幅广告牌,则共需安装照明灯1._____盏、广告牌2.______幅。1._____A.40B.42
最新回复
(
0
)