首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
验证α1=(1,-1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(-9,-8,-13)T用这个基线性表示.
admin
2021-02-25
34
问题
验证α
1
=(1,-1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(-9,-8,-13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且 x
11
α
1
+x
21
α
2
+x
31
α
3
=β
1
, x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得 [*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且 2α
1
+3α
2
-α
3
=β
1
, 3α
1
-3α
2
-2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://kaotiyun.com/show/Ii84777K
0
考研数学二
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
证明n维向量α1,α2……αn线性无关的充要条件是
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设f(x)为连续函数,试证明:F(x)的奇偶性正好与f(x)的奇偶性相反;
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
随机试题
违反《母婴保健法》应承担的行政责任不包括
葡萄糖注射液属于哪种类型注射剂()。
安全预评价过程中,确定安全预评价单元后,可以()。
变压器是输送交流电时所使用的一种交换电压和()的设备。
资产负债表左方反映的经济内容有()。
铁路运输中,如发生事故,当事人应向铁路部门提交()。
口渴会促使人做出觅水的行为活动,这是动机中的()。
我国现行宪法的结构体系是()。
Howbesttosolvethepollutionproblemsofacitysunksodeepwithinsulfurouscloudsthatitwasdescribedashellonearth?
在考生文件夹下的WORK文件夹中新建一个ENGLISH文件夹。
最新回复
(
0
)