首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得
admin
2018-11-21
62
问题
设f(x)在[x
1
,x
2
]可导,0<x
1
<x
2
,证明:
ξ∈(x
1
,x
2
)使得
选项
答案
令F(x)=[*],则f(x)在[x
1
,x
2
]可导,又F(x
1
)=[*][f(x
2
)—l], F(x
1
)一F(x
2
)=[*][f(x
1
)x
2
一f(x
2
)x
1
一l(x
2
一x
1
)]=0. 因此,由罗尔定理,[*]ξ∈(x
1
,x
2
),使得 F’(ξ)=[*][ξf’(ξ)一f(ξ)+l]=0, 即 f(ξ)一ξf’(ξ)=1.
解析
令l=
ξ∈(x
1
,x
2
)使得l=f(ξ)一ξf’(ξ)←→xf’(x)一f(x)+l在(x
1
,x
2
)存在零点←→f’(x)一
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Ipg4777K
0
考研数学一
相关试题推荐
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
设X~B(3,p),Y~B(2,p),已知P(X≥1)=,则P(Y<1)=____________.
设X的概率密度函数f(x)=已知P(X≤1)=,则E(X2)=___________.
设幂级数在(-∞,+∞)内收敛,其和函数y(x)满足y’’-2xy’-4y=0,y(0)=0,y’(0)=1。(Ⅰ)证明an=,n=0,1,2,…;(Ⅱ)求y(x)的表达式。
求f(x,y)=的极值。
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设n为正整数,利用已知公式In=∫0π/2sinnxdx=∫0π/2cosnxdx=I*,其中求下列积分:Jn=∫0π/2sinnxcosnxdx;
随机试题
下列那一项属于主诉问诊的内容
女性,35岁,已生育2子,4年前曾行输卵管绝育术,因其中一子夭折现希望再次妊娠,拟行输卵管复通术。追问病史既往行输卵管伞端切除绝育术,现拟行的手术方式为
下列关于伤亡事故统计报告和处理制度说法正确的是()。
2018年3月2日,甲公司以账面价值为350万元的厂房和150万元的专利权,换入乙公司账面价值为300万元的在建房屋和100万元的长期股权投资,不涉及补价。上述资产的公允价值均无法获得。不考虑其他因素,甲公司换入在建房屋的入账价值为()万元。
学校文化的功能主要体现在________、________、________和________四个方面。
佛教
留置权人不得使用留置物。()。
在会议开始前,市场部助理小王希望在大屏幕投影上向与会者自动播放本次会议所传递的办公理念,按照如下要求完成该演示文稿的制作:为上述SmartArt智能图示设置由幻灯片中心进行“缩放”的进入动画效果,并要求上一动画开始之后自动、逐个展示SmartArt中的
当前,信息技术、生命科学、智能制造、绿色能源等前沿领域不断突破,新材料、新产品、新业态迭代周期不断缩短。大数据、3D打印、人工智能,这些曾经的科学幻想,如今已经融入人们的衣食住行用,未来已经来到我们身边。新科技革命和产业变革是一次全方位变革,将对
Everyonewantstobehealthyandhappy.【C1】______,illnessoraccidentsmayoccurwithoutany【C2】______.Frequentlythepersonw
最新回复
(
0
)