首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值。
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值。
admin
2022-10-08
52
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值。
选项
答案
由方程组[*] 得x=0,(0≤y≤6)及点(4,0),(2,1). 点(4,0)及线段x=0在D的边界上,只有点(2,1)是可能的极值点。 f"
xx
=8y-6xy-2y
2
f"
xy
=8x-3x
2
-4xy f"
yy
=-2x
2
在点(2,1)处 A=f"
xx
(2,1)=(8y-6xy-2y
2
)[*]=-6<0 B=f"
xy
(2,1)=(8x-3x
2
-4xy)[*]=-4 C=f"
yy
(2,1)=-2x
2
[*]=-8 则B
2
-AC=16-48=-32<0 因此点(2,1)是极大值点,极大值f(2,1)=4 在边界x=0(0≤y≤6)和y=0(0≤x≤6)上f(x,y)=0,在边界x+y=6上,y=6-x,代入f(x,y)中得z=2x
3
-12x
2
(0≤x≤6) 由z’=6x
2
-24x=0得x=0,x=4,z"|
x=4
=12x-24|
x=4
=24>0 所以点(4,2)是边界上的极小值点,极小值为f(4,2)=-64 经比较得,最大值为f(2,1)=4,最小值为f(4,2)=-64.
解析
转载请注明原文地址:https://kaotiyun.com/show/LiR4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,+∞)上连续且单调增加,证明在[0,+∞)上也单调增加.
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf′(θ(x)x)成立;
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:至少存在一点ξ∈(0,1),使得f(ξ)=1-ξ;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,试证在(0,1)内至少存在一点ξ,使
求下列函数的导数:
设y=f(x)有二阶连续导数,且满足xy"+3xy′2=1-e-x.若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.
设函数f(x)具有连续的二阶导数,且点(0,f(0))是函数y=f(x)对应曲线的拐点,则
求在(0,1)点的偏导数.
设函数f(x)具有二阶连续的导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
随机试题
(2013年)关于企业战略管理的说法,错误的是()。
什么是认识过程的第二次飞跃?这次飞跃的重要性和实现条件是什么?
流行性乙型脑炎的传播途径是
在借贷记账法下,末期结账后,一般有余额的账户有()。
保证立法的社会主义方向和性质的重要原则是()。
扩散:是指一种物质的分子分散到另一种物质的分子中,最后均匀分布的现象。扩散现象生动地证明,无论是那一种形态的物质,它们的分子无时无刻不在运动,当它们互相接触的时候,彼此就要扩散到对方当中去。随着温度的升高,分子无规则运动的速度增大,扩散也加快。根据
A、B两地位于同一条河上,B地在A地下游100千米处。甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航。水速为2米/秒,且两船在静水中的速度相同。如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是(
根据下图所示的记忆实验结果,回答问题。从图中可以看出,刺激呈现时间影响的是
The"sing-song"theorywasputforwardbythegreatDanishlinguist______.
Sinceitistoolatetochangemymindnow,Iam______tocarryingouttheplan.
最新回复
(
0
)