设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量.如果生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2.试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?

admin2018-09-20  18

问题 设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量.如果生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2.试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?

选项

答案费用c=p1x1+p2x2,条件:12=2x1αx2β. 构造拉格朗日函数:F(x1,x2,λ)=p1x1+p2x2+λ(12—2x1αx2β).于是,有 [*] 此时投入总费用最小.

解析
转载请注明原文地址:https://kaotiyun.com/show/OxW4777K
0

随机试题
最新回复(0)