(2000年)设A,B是两个随机事件,随机变量 试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。

admin2021-01-25  41

问题 (2000年)设A,B是两个随机事件,随机变量

试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。

选项

答案E(X)=1.P{A}+(=1).[*]=2P{A}-1,同理,E(Y)=2P{B}-1。 现在求E(XY),由于XY只有两个可能值1和-1,所以 E(XY)=1.P{XY=1}+(-1).P{XY=-1}, 其中P{XY=1}=P{X=1,Y=1}+P{X=-1,Y=-1}=P{AB}+[*] =P{AB}+1-P{A∪B}=2P{AB}-P{A}-P{B}+1, 和P{XY=-1}=P{X=1,Y=-1}+P{X=-1,Y=1}=[*] =P{A}+P{B}-2P{AB}。 (或者P{XY=-1}=1-P{XY=1}=P{A}+P{B}-2P{AB})。 所以 E(XY)=P{XY=1}-P{XY=-1}=4P{AB}-2P{A}-2P{B}+1。 由协方差公式, Cov(XY)=E(XY)=E(X)E(Y) =4P{AB}-2P{A}-2P{B}+1-[2P{A}-1].[2P{B}-1] =4[P{AB}-P{A}P{B}], 因此,Cov(XY)=0当且仅当P{AB}=P{A}P{B},即X和Y不相关的充分必要条件是A与B相互独立。

解析
转载请注明原文地址:https://kaotiyun.com/show/Pwx4777K
0

最新回复(0)