首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
admin
2016-03-05
60
问题
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=U
T
U,即A与单位阵E合同.
选项
答案
必要性:因为对称阵A为正定的,所以存在正交矩阵P使P
T
AP=diag(λ
1
,λ
2
,…,λ
n
)=A,即A=PAP
T
,其中λ
1
,λ
2
,…,λ
n
为A的全部特征值,A是正定矩阵,λ
1
,λ
2
,…,λ
n
均为正数. 令[*]A=A
1
A
1
,A=PA
1
A
1
T
P
T
. 再令U=A
1
T
P
T
,则U可逆,且A=U
T
U故A与单位矩阵合同.充分性:若存在可逆矩阵U,使A=U
T
U,则对任意的x∈R
n
且x≠0,有‖Ux‖
2
>0,即f(x)=x
T
Ax=x
T
U
T
Ux=‖Ux‖
2
>0,矩阵A是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ra34777K
0
考研数学二
相关试题推荐
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求曲线y=y(x)的凹凸区间及拐点.
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点ξ∈(0,1),使得f’>(ξ)=0;
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
设函数f(x)在[a,b]上连续,且f(x)>0,则方程∫axf(t)dt+∫bx=0在(a,b)内的实根个数为().
设总体X的概率密度为f(x;α,β)=,其中α,β是未知参数.利用总体X的如下样本值:一0.5,0.3,一0.2,一0.6,一0.1,0.4,0.5,一0.8,求α的矩估计值与最大似然估计值.
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
随机试题
邓牧《君道》中,“让石户之农而石户之农入海”的人是()
某工地施工扬尘严重,市环保局接到群众举报并进行查实后,依法判其做出停工整改并处以3万元罚款的行政处罚,施工企业认为处罚过高,可以向()申请行政复议。[2014年真题]
扩展不确定度是确定测量结果()的量。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分150分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指定位置填写自己的姓名,填涂准考证
小岛国联盟中的一些国家地处热带地区,这些热带地区的小岛国风景优美、物产丰富。近年来,这些风景优美的小岛国日益被世人所关注,逐渐成为世界各国游客境外游的首选。在岛国旅游热潮的推动下,这些小岛国的经济正在高速发展。据此,可以推出:
Astatictechnocraticorder,bycontrast,requiresaverydifferentsortofpersonality:adronewhodoeswhatheistoldandsh
OSI网络管理标准定义了网管的五大功能。其中,接收报警信息、启动报警程序、以各种形式发出警报的功能属于(327);接收告警事件、分析相关信息、及时发现正在进行的攻击和可疑迹象的功能属于(328);对每一个被管理对象的每一个属性设置阈值、控制阈值检查和告警的
通过下列总线______打印机不可以连接到计算机上使用。
在下面列出的数据模型中,哪一个是概念数据模型?
A、ItisansimpleexplosiveB、ItisamilitaryexplosiveC、ItismadeinU.SfactoriesD、ItcanbeeasilymadeindoorsD
最新回复
(
0
)