首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2019-05-10
54
问题
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α
1
=[一1,2,一1]
T
,α
2
=[0,一1,1]
T
都是齐次方程组AX=0的解.
(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
认真分析题设条件,在A未知的情况下也能求出其特征值和特征向量.在此基础上将所求得的特征向量正交化,单位化即得Q. (1)由题设有A[1,1,1]
T
=[3,3,3]
T
=3[1,1,1]
T
,则λ
0
=3为A的特征值,α
0
=[1,1,1]
T
为A的属于λ
0
=3的特征向量(见命题2.5.1.4),于是A的属于特征值3的所有特征向量为k
0
α
0
(λ
0
为非零的任意常数). 又α
1
,α
2
为AX=0的非零解向量,故Aα
1
=0=0·α
1
,因而α
1
为A的属于特征值λ
1
=0的特征向量.同法可知,α
2
也是A的属于特征λ
2
=0的特征向量.因α
1
,α
2
线性无关,故A的属于特征值0的所有特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零). (2)因0为A的二重特征值.现将属于多重特征值的特征向量α
1
,α
2
正交化(因α
1
,α
2
不正交),使用施密特正交化的方法,得到 β
1
=α
1
, β
2
=α
2
一[*] 则β
1
,β
2
正交.显然α
0
与β
1
,β
2
都正交,因它们是实对称矩阵不同特征值的特征向量. 下面将α
0
,β
1
,β
2
单位化,得到 [*] 令Q=[η
0
,η
1
,η
2
],则Q为正交矩阵,且有 Q
T
AQ=Q
-1
AQ=diag(3,0,0)=A. ①
解析
转载请注明原文地址:https://kaotiyun.com/show/RjV4777K
0
考研数学二
相关试题推荐
已知A是三阶矩阵,r(A)=1,则λ=0()
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设。计算行列式|A|;
随机试题
下列属于我国自然资源范畴的有()
以下一定不属于汉字国标码的是____。
YoushouldAchecktheairintheBtiresCasyoustartDonalongautomobiletrip.
具有敛肺止咳、生津安蛔功效的药物是
心主血,肾藏精,故“心肾相交”又称“精血同源”。()
填土地区公路工程,其必做室内湿陷性测试项目的是()。
下列有关药材黄精的说法,正确的是()。
下列叙述中正确的是()。
Inthesimplestterms,amarketistheplacewheresellermeetsbuyertoexchangeproductsformoney.Traditionalmarketsstill
A.classifiedB.conductedC.dietingD.earlierE.laterF.lessG.lifeH.linked
最新回复
(
0
)