首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
admin
2019-01-13
39
问题
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,一1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)一(η
2
+η
3
)=η
1
一η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)一(η
3
+η
1
)=η
2
一η
1
=[2,一3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为[*] 故AX=b的通解为 k
1
[一1,3,2]
T
+k
2
[2,一3,1]
T
+[0,1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ufj4777K
0
考研数学二
相关试题推荐
(1999年)设A是m×n矩阵,B是n×m矩阵,则
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a、b为常数,则
(1998年)利用代换y=将方程y〞cosχ-2y′sinχ+3ycosχ=eχ化简,并求出原方程的通解.
(1993年)设f′(χ)在[0,a]上连续,且f(0)=0,证明
(2013年)设函数f(χ)=lnχ+.(Ⅰ)求f(χ)的最小值;(Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
计算积分:已知f(x)=求∫2n2n+2(x一2n)e一xdx,n=2,3,….
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A一3E|的值.
随机试题
初级精母细胞()
治疗气虚便秘宜选
甲、乙、丙三人成立了一家合伙企业,合伙协议约定由甲经营并承担合伙企业的全部债务,丁是该合伙企业的债权人。当合伙企业的财产不足以偿付丁的债权时,丁()
螺旋体感染首选
李某是否有权请求法院撤销王某和赵某的买卖合同?请说明理由。如果李某主张撤销王某继承权抛弃的行为,能否得到法院的支持,请说明理由。
机器装配过程一般分为()。
因确认股东资格纠纷引起的民事诉讼,由公司住所地人民法院管辖。()
国别价值和()存在“比较差异”,是国际价值规律发挥作用的一种表现形式。
南宋时期形成的坊刻中心有()等。
下图中的立体图形①是由立体图形②、③和④组合而成,下列哪一项能够填入问号处?
最新回复
(
0
)