首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
admin
2018-06-14
58
问题
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:
试就放回与不放回两种情形,求出(X,Y)的联合分布律.
选项
答案
(X,Y)是二维离散型随机变量,其全部可能取值为(0,0),(0,1),(1,0),(1,1). (Ⅰ)有放回抽取,由于X与Y相互独立,则 P{X=i,Y=j}=P{X=i}P{Y=j},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0}=0.4
2
=0.16, P{X=0,Y=1}=P{X=0}P{Y=1}=0.4.0.6=0.24, P{X=1,Y=0}=P{X=1}P{Y=0}=0.6.0.4=0.24, P{X=1,Y=1}=P{X=1}P{Y=1}=0.6
2
=0.36. [*] (Ⅱ)不放回抽取, P{X=i,Y=j}=P{X=i}P{Y=j{X=i},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0|X=0}=[*], P(X=0,Y=1}=P(X=0}P{Y=1|X=0}=[*], P{X=1,Y=0}=P{X=1}P{Y=0|X=1}=[*], P{X=1,Y=1}=P{X=1}P{Y=1|X=1}=[*], [*] 由此可见,无论是有放回还是不放回抽取其边缘分布律X,Y都相同且都服从参数为0.6的0—1分布,且当有放回抽取时X与Y独立;无放回抽取时X与Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/UmW4777K
0
考研数学三
相关试题推荐
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
求圆x2+y2=2y内位于抛物线y=x2上方部分的面积.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(x)(x—t)dt.
设f(x)=∫一1x(1一|t|)dt(x>一1),求曲线y=f(x)与x轴所围成的平面区域的面积.
设为两个正项级数.证明:若收敛;
设有幂级数2+求此幂级数的和函数.
设f(x)=∫0tanxarcta.t2dt,g(x)=x一sinx,当x→0时,比较这两个无穷小的关系.
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(x)表示)
(Ⅰ)设X与Y相互独立,且X-N(5,15),Y-χ2(5),求概率P{X-5>(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<X<3.5)∩(6.3<S2<9.6)}.
讨论级数的敛散性与参数p,x的关系.
随机试题
在比较模块独立性时,凝聚程度最高的是()
颈前部烧伤时头的摆放应为
下列选项中属于劣药的是
药物的副反应是
一般进出口货物也称为一般贸易货物,是指在进出境环节缴纳了应征的进出口税费并办结了所有必要的海关手续,海关放行后不再进行监管,可以直接进入生产和流通领域的进出口货物。
根据《企业破产法》的规定,债权人会议行使的职权包括( )。
导游人员不仅要做到“三过硬”,而且在观念、角色和所起的作用上要有新的变化,要具有(),通过优质服务满足游客需求,巩固和扩大客源市场占有率。
根据下列资料,回答下列问题。2010年全国房地产开发资金来源中,个人按揭贷款约占()。
ATM技术的特点是(63)。
由于数据库采用了______结构,保证了数据的逻辑独立性。
最新回复
(
0
)