首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
admin
2018-06-14
67
问题
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:
试就放回与不放回两种情形,求出(X,Y)的联合分布律.
选项
答案
(X,Y)是二维离散型随机变量,其全部可能取值为(0,0),(0,1),(1,0),(1,1). (Ⅰ)有放回抽取,由于X与Y相互独立,则 P{X=i,Y=j}=P{X=i}P{Y=j},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0}=0.4
2
=0.16, P{X=0,Y=1}=P{X=0}P{Y=1}=0.4.0.6=0.24, P{X=1,Y=0}=P{X=1}P{Y=0}=0.6.0.4=0.24, P{X=1,Y=1}=P{X=1}P{Y=1}=0.6
2
=0.36. [*] (Ⅱ)不放回抽取, P{X=i,Y=j}=P{X=i}P{Y=j{X=i},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0|X=0}=[*], P(X=0,Y=1}=P(X=0}P{Y=1|X=0}=[*], P{X=1,Y=0}=P{X=1}P{Y=0|X=1}=[*], P{X=1,Y=1}=P{X=1}P{Y=1|X=1}=[*], [*] 由此可见,无论是有放回还是不放回抽取其边缘分布律X,Y都相同且都服从参数为0.6的0—1分布,且当有放回抽取时X与Y独立;无放回抽取时X与Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/UmW4777K
0
考研数学三
相关试题推荐
设(x)=,求(n)(x).
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
设f(x))=
由方程xyz+确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=________。
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
判断级数的敛散性.
求下列不定积分:
设f(x)=∫0tanxarcta.t2dt,g(x)=x一sinx,当x→0时,比较这两个无穷小的关系.
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(x)表示)
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)