首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
admin
2017-07-26
31
问题
已知A是3×4矩阵,r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(1,一1,a,5)
T
,α
3
=(2,a,一3,一5)
T
,α
4
=(一1,一1,1,a)
T
线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
选项
答案
因为A是3×4矩阵,且r(A)=1,所以齐次方程组Ax=0的基础解系有n一r(A)=3个解向量.又因α
1
,α
2
,α
3
,α
4
线性相关,且可以表示Ax=0的任一解,故向量组α
1
,α
2
,α
3
,α
4
的秩必为3,且其极大线性无关组就是Ax=0的基础解系.由于 [*] 当且仅当a=一3,4或1时,r(α
1
,α
2
,α
3
,α
4
)=3,且不论其中哪种情况,α
1
,α
2
,α
3
必线性无关. 所以α
1
,α
2
,α
3
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/UyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求α的值;
下列矩阵中两两相似的是
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3一2α1+3α3.求矩阵A的特征值;
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(x∈(0,1)),证明:
证明下列命题:设f’(x0)=0,f’’(x0)>0,则存在δ>0使得y=f(x)在(x0—δ,x0]单调减少,在[x,x0δ)单调增加;
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
向量组α1,α2,…,αm线性无关的充分必要条件是().
随机试题
“六法”论出自于南朝谢赫的《画品》。[安徽2019]()
急性胰腺炎患者禁食、胃肠减压的主要目的是
关于处方书写的基本要求,错误的是
下列各项中,反映了可靠性会计信息质量要求的有()。
甲为合伙企业的合伙人,乙为甲个人债务的债权人。当甲个人财产不足清偿乙的债务时,乙可以按照法律规定行使所拥有的权利,该权利是()。
关于个人所得税纳税申报的说法,正确的有()。
女,30岁,近一周经常疲倦、食欲不振、便秘、工作能力下降,指趾有麻木感,肌肉酸痛,腓肠肌压痛明显,腱反射亢进。需进一步检查的生化指标是()。
村民委员会的任期是()一届。
Tonyhasalwayslovedgoingtothebeach.Hespendsasmuchtimethereashecan.Oneday,Tonyandhismomgrabbedthei
一、注意事项1、申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。2、作答参考时限:阅读时间40分钟,作答110分钟。3、仔细阅读给定的资料,按照后面提出的“作答要求”依次作答在答题纸指定位置。4、答题时认准题号,避免答错位置
最新回复
(
0
)