首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
admin
2022-04-10
94
问题
已知α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解,其中
2α
1
一α
2
=[0,2,2,2]
T
,
α
1
+α
2
+α
3
=[4,一1,2,3]
T
,
2α
2
+α
3
=[5,一1,0,1]
T
,
秩(A)=2,那么方程组AX=b的通解是__________.
选项
答案
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
解析
利用方程组解的结构及其性质求之.
因为n一r(A)=4—2=2,所以方程组AX=b的通解形式为
α+k
1
η
1
+k
2
η
2
,
其中α为Ax=b的特解,η
1
,η
2
为AX=0的基础解系.
因此,下面应求出AX=b的一个解及AX=0的两个线性无关的解.
根据解的性质知,
2α
1
一α
2
=α
1
+(α
1
-α
2
)=[0,2,2,2]
T
是AX=b的解.而
(α
1
+α
2
+α
3
)一(2α
2
+α
3
)=α
1
一α
2
=[一1,0,2,2]
T
是AX=0的解.
3(2α
1
一α
2
)一(2α
2
+α
3
)=5(α
1
一α
2
)+(α
1
-α
3
)=[一5,7,6,5]
T
是AX=0的解.显然[一1,0,2,2]
T
与[一5,7,6,5]
T
线性无关(对应分量不成比例).
因此,方程组AX=b的通解为
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
,
其中k
1
,k
2
为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/VQR4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.(1)求(I)的一个基础解系;(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
随机试题
诊断肠易激综合征最关键的是
以下化学结构药物的名称是
按季节时令使用滋补药的原则有
乘坐乙国航空公司航班的甲国公民,在飞机进入丙国领空后实施劫机,被机组人员制服后交丙国警方羁押。甲、乙、丙三国均为1963年《东京公约》、1970年《海牙公约》及1971年《蒙特利尔公约》缔约国。据此,下列哪一选项是正确的?(2017年卷一32题,单选)
按项目销售时间和进度,可将房地产销售分为()几个阶段。
粒料基层级配碎石路拌法施工中,碾压时应遵循的原则是()。
增值税的实际计税依据是销售额,它是指纳税人销售货物或应税劳务时从购买方收取的全部货币收入。()
幼儿表达技能的目标不包括()
第1台计算机ENIAC在研制过程中采用了哪位科学家的两点改进意见
数据独立性是数据库技术的重要特点之一。所谓数据独立性是指()。
最新回复
(
0
)