首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
admin
2022-04-10
58
问题
已知α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解,其中
2α
1
一α
2
=[0,2,2,2]
T
,
α
1
+α
2
+α
3
=[4,一1,2,3]
T
,
2α
2
+α
3
=[5,一1,0,1]
T
,
秩(A)=2,那么方程组AX=b的通解是__________.
选项
答案
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
解析
利用方程组解的结构及其性质求之.
因为n一r(A)=4—2=2,所以方程组AX=b的通解形式为
α+k
1
η
1
+k
2
η
2
,
其中α为Ax=b的特解,η
1
,η
2
为AX=0的基础解系.
因此,下面应求出AX=b的一个解及AX=0的两个线性无关的解.
根据解的性质知,
2α
1
一α
2
=α
1
+(α
1
-α
2
)=[0,2,2,2]
T
是AX=b的解.而
(α
1
+α
2
+α
3
)一(2α
2
+α
3
)=α
1
一α
2
=[一1,0,2,2]
T
是AX=0的解.
3(2α
1
一α
2
)一(2α
2
+α
3
)=5(α
1
一α
2
)+(α
1
-α
3
)=[一5,7,6,5]
T
是AX=0的解.显然[一1,0,2,2]
T
与[一5,7,6,5]
T
线性无关(对应分量不成比例).
因此,方程组AX=b的通解为
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
,
其中k
1
,k
2
为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/VQR4777K
0
考研数学三
相关试题推荐
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y为多少时,产量Q最大,并求最大产量.
设a=3i-j-2k,b=i+2j-k,求(1)a.b;(2)a×b;(3)Prjab;(5)cos(a,^b).
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
设(ai≠0,i=1,2,…,n),求A一1.
设函数f(x)在[0,1]上连续.证明:∫01ef(x)dx∫01e-f(y)dy≥1.
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线.y=f(x)相交于点C(c,f©其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f’’(ξ)=0.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
随机试题
Yourweightaffectshowlongyoulive—butit’sextremelycomplicatedA)Weoftenthinkaboutweightlossintheshortterm,
在Word2003中,利用______可方便地调整段落缩进、页面的上下左右边距、表格的列宽和行高。
男性,重体力劳动工人,腰腿痛,并向左下肢放散,咳嗽、喷嚏时加重。检查腰部活动明显受限,并向左倾斜,直腿抬高试验阳性。病程中无低热、盗汗、消瘦症状。如果病史2年,并逐年加重,已严重影响生活及工作,且出现尿便障碍,其治疗方法是
痢疾的常见之症是中气下陷者排便后多见
合同订立过程必须经过的程序是()。
重力式方块码头建筑物,方块安装时,在立面上,有()安装三种方法。
在绩效考评方案中,最为关键的是()。
甲已年过花甲,但却赌博成瘾,欠下了2万元赌债,便要求子女增加支付赡养费以用来还赌债,下列说法正确的是()。
RUP是信息系统项目的生命周期模型之一,“确保软件结构、需求、计划足够稳定;确保项目风险已经降低到能够预计完成整个项目的成本和日程的程度。针对项目的软件结构上的主要风险已经解决或处理完成”是该模型(30)阶段的主要任务。
Weknowourfriendsbytheirdefects__bytheirmerits.
最新回复
(
0
)