首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9.已知如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合格率为0.6
某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9.已知如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合格率为0.6
admin
2018-11-20
23
问题
某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9.已知如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合格率为0.6;如果三件都不是优质品,则仪器的不合格率为0.9.
(I)求该仪器的不合格率;
(Ⅱ)如果已发现一台仪器不合格,问它有几个部件不是优质品的概率最大.
选项
答案
记事件B=“仪器不合格”,A
i
=“仪器上有i个部件不是优质品”,i=0,1,2,3.显然A
0
,A
1
,A
2
,A
3
构成一个完备事件组,且 P(B|A)
0
=0, P(B|A
1
)=0.2, P(B|A
2
)=0.6, P(B|A
3
)=0.9, P(A
0
)=0.8×0.7×0.9=0.504, P(A
1
)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398, P(A
3
)=0.2×0.3×0.1=0.006, P(A
2
)=1—P(A
0
)一P(A
1
)一P(A
3
)=0.092. (I)应用全概率公式,有 [*] =0.504×0+0.398×0.2+0.092×0.6+0.006×0.9=0.1402. (Ⅱ)应用贝叶斯公式,有 [*] 从计算结果可知,一台不合格的仪器中有一个部件不是优质品的概率最大.事实上,根据条件概率的性质:[*]P(A
i
|B)=1,在我们计算出P(A
1
|B)=[*]>0.5之后,即可以确定对于i=2,3,P(A
i
|B)都小于0.5,从而不必再计算P(A
2
|B)与P(A
3
|B)就可以得到问题(Ⅱ)的答案.
解析
转载请注明原文地址:https://kaotiyun.com/show/VyW4777K
0
考研数学三
相关试题推荐
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求(X,Y)的概率分布.
设X,Y的概率分布为,且P(XY=0)=1.X,Y是否独立?
设随机变量X的密度函数为f(x)=求常数A;
n维列向量组α1,…,αn一1线性无关,且与非零向量β正交,证明:α1,…,αn一1,β线性无关.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2—2A=0,该二次型的规范形为________.
设k为常数,方程kx一+1=0在(0,+∞)内恰有一根,求k的取值范围.
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设盒子中装有m个颜色各异的球,有放回地抽取n次,每次1个球。设X表示n次中抽到的球的颜色种数,则E(X)=________。
随机试题
诊断脊柱骨折脱位时,应注意
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】________shouldbemad
以下哪些不是网络型漏洞扫描器的功能
痰液静置后有分层现象的见于
一切防火措施都是为了防止燃烧的3个条件同时存在,所能采取的基本措施是()。
监管谈话是指监管人员为了解银行业金融机构的经营状况、风险状况和发展趋势而与其()进行谈话。
拥有专利申请权的自然人死亡的,其继承人拟继承该专利申请权的,应当自被继承人死亡之日起3个月内向专利行政部门提出申请。()
心理咨询中,运用参与性技术的目的之一是()。(2010年11月真题)
建筑结构中,屋架是常用的结构形式,它一般运用于较大跨度的建筑中,其受力特点为节点荷载,所有杆件只受()。
以下不属于数据输入输出风格的是(49)。
最新回复
(
0
)