首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)﹥0,取xi∈[a,b](i=1,2,...,n)及ki﹥0,(i=1,2,...,n)且满足k1+k2+...+kn=1.证明: f(k1x1+k2x2+...+knxn)≤k1f(x1)+k2f(x2)+.
设f(x)在[a,b]上二阶可导,且f"(x)﹥0,取xi∈[a,b](i=1,2,...,n)及ki﹥0,(i=1,2,...,n)且满足k1+k2+...+kn=1.证明: f(k1x1+k2x2+...+knxn)≤k1f(x1)+k2f(x2)+.
admin
2020-03-16
34
问题
设f(x)在[a,b]上二阶可导,且f"(x)﹥0,取x
i
∈[a,b](i=1,2,...,n)及k
i
﹥0,(i=1,2,...,n)且满足k
1
+k
2
+...+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+...+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+...+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+...+k
n
x
n
,显然x
0
∈[a,b],因为f"(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
),分别取x=x
i
(i=1,2,...n),得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WE84777K
0
考研数学二
相关试题推荐
讨论函数f(χ)=(χ>0)的连续性.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
已知函数f(μ)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny—sinx),求。
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
求下列函数f(χ)在χ=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(χ)=;(Ⅱ)f(χ)=eχsinχ.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.求方程组AX=b的通解.
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,求方程组所有的解。
随机试题
苏轼的《水调歌头》(明月几时有)是一首
关于急性心肌梗死的指标乳酸脱氢酶的描述不正确的是
原发性疱疹性口炎好发人群是
根据国家有关部门的规定,项目管理实行()责任制。
下列城市电力负荷预测方法中,()不宜用于城市电量的远期预测。
我国税收征收机关有()。
人格解体包括以下哪些特征?()
这是最好的城际竞技场。每一次申办承办,都是一次巧妙的城市公关。对于新生显贵而言,这的确是千载难逢的登堂入室的绝好台阶。国际奥委会委员们在每一张选票上,并不是单纯的打勾划叉,他们亦在谱绘世界风云榜上城际间的升跌走势图。这段话意在表明()。
网络隔离技术的目标是确保把有害的攻击隔离,在保证可信网络内部信息不外泄的前提下,完成网络间数据的安全交换。下列隔离技术中,安全性最好的是(1)。
WhentheDowrockets300pointsorthestocksofretailers,say,getdecimated,Idevourthenews.Here’smyadmission:I’mabu
最新回复
(
0
)