首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2.…).则下列结论正确的是
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2.…).则下列结论正确的是
admin
2019-07-12
27
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2.…).则下列结论正确的是
选项
A、若u
1
>u
2
则{u
n
)必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
解1 直接法:由拉格朗日中值定理知
u
2
一u
1
=f(2)一f(1)=f’(c) (1<c<2)
而 u
2
>u
1
,则f’(c)>0,
由于f"(x)>0,则f’(x)单调增,从而有f’(2)>f’(c)>0,由泰勒公式得,
由于f’(2)>0,则
从而
故{u
n
}发散.
解2 排除法:
令f(x)=(x一2)
2
,则f"(x)=2>0,u
1
=f(1)=1,u
2
=f(2)=0,u
1
>u
2
,但u
n
=f(n)=(n一2)
2
,
从而{u
n
}发散,则(A)不正确.
令f(x)=e—x
-x
,则f"(x)=e
-x
>0,
u
1
>u
2
而u
n
=f(n)=e
-n
,
则{u
n
}收敛,(B)不正确.
令f(x)=e
x
,则f"(x)=e
x
>0,且u
1
=f(1)=e,u
2
=f(2)=e
2
,u
1
2,而u
n
=f(n)=e
n
,
则{u
n
)发散,(C)不正确.由排除法知(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/WHc4777K
0
考研数学一
相关试题推荐
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放多个球,计算下列事件的概率:B={每个盒子中最多只有一个球};
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
设(2E-C-1B)AT=C-1,其中B是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
试证明:曲线恰有三个拐点,且位于同一条直线上.
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X-2Y).
设随机变量X的分布函数为则A,B的值依次为______.
设随机变量X的概率密度为则Y=2X的概率密度为()
设幂级数an(x-b)n在x=0处收敛,在x=2b处发散,求幂级数anxn的收敛半径R与收敛域,并分别求幂级数的收敛半径.
判别下列正项级数的敛散性:
随机试题
高血压的治疗手段不包括
设f(x)=x3+ax2+bx在x=1处有极小值一2,则必有()。
噪气污染治理,可采用吸声、()减振、隔振等措施。
在Word的编辑状态,单击常用工具栏中的“新建”按钮后( )。
安排会场茶歇的正确做法是()。
核能通过核裂变、核聚变和核衰变三种方式释放,核裂变主要用于核能发电。()
①法庭判决②单方违约③提起诉讼④支付违约金⑤签订合同
R1、R2是一个自治系统中采用RIP路由协议的两个相邻路由器,R1的路由表如下图(a)所示,当R1收到R2发送的如下图(b))的(V,D)报文后,R1更新的4个路由表项中距离值从上到下依次为0、2、3、3那么,①②③④可能的取值依次为(
函数rewind(fp)的作用是()。
Whataretheytalkingabout?
最新回复
(
0
)