首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2.…).则下列结论正确的是
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2.…).则下列结论正确的是
admin
2019-07-12
50
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2.…).则下列结论正确的是
选项
A、若u
1
>u
2
则{u
n
)必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
解1 直接法:由拉格朗日中值定理知
u
2
一u
1
=f(2)一f(1)=f’(c) (1<c<2)
而 u
2
>u
1
,则f’(c)>0,
由于f"(x)>0,则f’(x)单调增,从而有f’(2)>f’(c)>0,由泰勒公式得,
由于f’(2)>0,则
从而
故{u
n
}发散.
解2 排除法:
令f(x)=(x一2)
2
,则f"(x)=2>0,u
1
=f(1)=1,u
2
=f(2)=0,u
1
>u
2
,但u
n
=f(n)=(n一2)
2
,
从而{u
n
}发散,则(A)不正确.
令f(x)=e—x
-x
,则f"(x)=e
-x
>0,
u
1
>u
2
而u
n
=f(n)=e
-n
,
则{u
n
}收敛,(B)不正确.
令f(x)=e
x
,则f"(x)=e
x
>0,且u
1
=f(1)=e,u
2
=f(2)=e
2
,u
1
2,而u
n
=f(n)=e
n
,
则{u
n
)发散,(C)不正确.由排除法知(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/WHc4777K
0
考研数学一
相关试题推荐
设总体X的分布列为截尾几何分布P{X=k)=θk-1(1-θ),k=1,2,…,r,P{X=r+1}=θr,从中抽得样本X1,X2,…,Xn其中有m个取值为r+1,求θ的最大似然估计.
设顾客在某银行窗口等待服务的时间X(单位:分)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1}.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放多个球,计算下列事件的概率:B={每个盒子中最多只有一个球};
设(2E-C-1B)AT=C-1,其中B是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
设X1,X2,…,Xn为来自总体X的简单随机样本,且X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求:当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
设则其以2π为周期的傅里叶级数在x=±π处收敛于______.
设随机变量X与Y相互独立,且都服从参数为1的指数分布,则随机变量的概率密度为______.
设随机变量X的分布函数为则A,B的值依次为______.
适当选取函数φ(x),作变量代换y=φ(x)u,将y关于x的微分方程化为u关于x的二阶常系数线性齐次微分方程求φ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
将函数展开成x-2的幂级数,并求出其收敛范围.
随机试题
在石油沥青防腐中,熬制沥青时,应经常搅拌并清除漂浮物。
对于淋巴管及淋巴回流的描述,不正确的是
原核基因表达调控中的诱导现象是指
25岁女性,孕50天行人工流产术,术后14天仍有阴道流血,妇科检查子宫如40天妊娠大小,附件正常。初步考虑的诊断是
7月8日上午,某公司施工人员刘某到现场巡查发现l号机和3号高加汽侧管道底部放水管(属于压力管道)有泄漏,随机向汽机检修班汇报缺陷情况,汽机检修班副班长吴某立即将此情况向汽机检修分部经理和设备部点检员报告,汽机检修分部经理袁某接到报告后,考虑到泄漏点不大,决
在确定企业的收益分配政策时,应当考虑相关因素的影响,其中“资本保全约束”属于()。
形而上学唯物主义物质观的错误在于()。
设X1,X2,…,Xn为来自总体N(μ,σ2)的简单随机样本,样本均值=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为________。
Theygavea________welcometotheirspecialguest.
Somepeopleseemtohaveaknack(诀窍)forlearninglanguages.Theycanpickupnewvocabulary,masterrulesofgrammar,andlearn
最新回复
(
0
)