首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
admin
2019-05-14
26
问题
设f(x)在(-∞,+∞)内二次可导,令F(x)=
求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(x)的定义及题设可知F(x)分别在(一∞,x
0
],(x
0
,+∞)连续,分别在(一∞,x
0
),(x
0
,+∞)二次可导.从而,为使F(x)在(一∞,+∞)二次可导,首先要使F(x)在x=x
0
右连续,由于F(x
0
一0)=F(x
0
)=f(x
0
),F(x
0
+0)=C,故 F(x)在(一∞,+∞)连续 [*]C=f(x
0
). 在C=f(x
0
)的情况下,F(x)可改写成 [*] 从而[*] 故 F(x)在(一∞,+∞)可导 [*]B=f′(x
0
). 在C=f(x
0
),B=f′(x
0
)的情况下,F(x)可改写成 [*] 故 F(x)在(一∞,+∞)内二次可导[*]f″(x
0
). 综合得,当A=[*]f″(x
0
),B=f′(x
0
),C=f(x
0
)时F(x)在(一∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/We04777K
0
考研数学一
相关试题推荐
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足=e2xz,求f(u)。
(Ⅰ)分子、分母同除以x的最高次幂,即[*]
曲面(a>0)上任何点处的切平面在各坐标轴上的截距之和为___________。
求常数项级数的和。
求数项级数的和。
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证:(Ⅰ)曲面S上点处的法线总垂直于常向量;(Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
设二维随机变量(X,Y)在矩形区域D={(χ,y):0≤χ≤2,0≤y≤1}上服从二维均匀分布,随机变量(Ⅰ)求U和V的联合概率分布;(Ⅱ)讨论U和V的相关性与独立性.
设质点P沿以为直径的下半圆周,从点A(1,2)运动到B(3,4)的过程中,受变力F的作用,F的大小等于点P到原点O之距离,方向垂直于线段,与y轴正向的夹角小于π/2,求变力F对质点P做的功.
求下列极限:
设f(x)在(-∞,+∞)连续,在点x=0处可导,且f(0)=0,令试求A的值,使F(x)在(-∞,+∞)上连续;
随机试题
Theboy,______fatherisanengineer,studiesveryhard.
()相关者,是指建设项目的直接受益者或直接受到损害的人员或机构。
2003年6月18日,山东省淄博市某饮食服务宿舍楼在拆除过程中坍塌,造成5人死亡,2人重伤。淄博市某道路拓展拆迁工作中,需拆除一幢宿舍楼。该工程由淄博市某区拆迁办公室与该区农民郭、李二人订立了房屋拆除合同。之后,郭、李二人又将此拆迕工程非法转给某村
中国境内各单位应用的会计核算软件,应当符合《会计核算软件基本功能规范》的基本要求。 ( )
下列有关企业的社会责任表述错误的是()。
请认真阅读下列材料,并按要求作答。请根据上述材料完成下列任务:如何指导低年段小学生学习该材料,试拟定教学目标。(10分)
黄色颜料和绿色颜料混合所得到的颜色,其明度是
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d-P),其中a,b,c,d,e都是正的常数,且d>b.求:(Ⅰ)产量Q为多少时,利润最大?最大利润是多少?(Ⅱ)这时需求对价格的弹性是多少?(Ⅲ)需求对价格的弹
设问当k为何值时,存在可逆矩阵P,使得P-1AP=D为对角矩阵?并求出P和相应的对角矩阵D.
Idon’tknowhowtoremembernewwords.Canyougiveme______?
最新回复
(
0
)