首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
admin
2019-05-14
64
问题
设f(x)在(-∞,+∞)内二次可导,令F(x)=
求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(x)的定义及题设可知F(x)分别在(一∞,x
0
],(x
0
,+∞)连续,分别在(一∞,x
0
),(x
0
,+∞)二次可导.从而,为使F(x)在(一∞,+∞)二次可导,首先要使F(x)在x=x
0
右连续,由于F(x
0
一0)=F(x
0
)=f(x
0
),F(x
0
+0)=C,故 F(x)在(一∞,+∞)连续 [*]C=f(x
0
). 在C=f(x
0
)的情况下,F(x)可改写成 [*] 从而[*] 故 F(x)在(一∞,+∞)可导 [*]B=f′(x
0
). 在C=f(x
0
),B=f′(x
0
)的情况下,F(x)可改写成 [*] 故 F(x)在(一∞,+∞)内二次可导[*]f″(x
0
). 综合得,当A=[*]f″(x
0
),B=f′(x
0
),C=f(x
0
)时F(x)在(一∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/We04777K
0
考研数学一
相关试题推荐
微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=___________。
设(X,Y)是二维随机变量,且随机变量X=X+Y,X2=X-Y,已知(X1,X2)的概率密度函数为f(χ1,χ2)=(Ⅰ)求X与Y的边缘概率密度;(Ⅱ)计算X与Y的相关系数ρXY.
自动生产线在调整后出现废品的概率为p(0<P<1),当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的概率分布、数学期望和方差.
设F(u,v)有连续偏导数,且满足≠0,其中a,b,c≠0为常数,并有曲面S:F(cχ-az,cy-bz)=0,求证:(Ⅰ)曲面S上点处的法线总垂直于常向量;(Ⅱ)曲面S是以г:=0,为准线.母线平行于l=(a.b.c)的柱面.
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点.(Ⅰ)求点P0及S与П的最短距离;(Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
设随机变量(X,Y)在矩形区域D={(χ,y):0<χ<2.0<y<2}上服从均匀分布,(Ⅰ)求U=(X+Y)2的概率密度;(Ⅱ)求V=max(X,Y)的概率密度;(Ⅲ)求W=XY的概率密度.
设随机变量X与Y同分布,X~,并且P{XY=0}=1.求(X,Y)的联合概率分布与X+Y的概率分布.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:常数k1,k2的值;
确定常数a和b的值,使得=6.
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:对于(一1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
随机试题
企业主要依靠自身力量进行技术开发和产品开发的科技战略属于
当事人既约定违约金,义约定定金的,一方违约时,对方可以选择适用违约金或者定金条款,________。
下列论述不符合处方管理要求的是
请说出心源性呼吸困难病人的护理诊断及护理措施。
A.推动作用B.温煦作用C.防御作用D.固摄作用E.调控作用津液输布和排泄的动力是指气的
税务咨询最为常用的一种方式是()。
“古之王者,建国君民,教学为先”,体现了()的教育目的观。
2003年,加拿大GDP在表中所列国家中的排名为()。
如果可以在国内自由地持有外汇资产,并可自由地将本国货币兑换成外币资产,则(清华大学2017年真题)()
【B1】【B6】
最新回复
(
0
)