首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,B,C为n阶矩阵,满足条件 (A+2E)B=O,(A-3E)C=O 且r(B)=r(0<r<n),r(B)+r(C)=n,则二次型f(x1,x2,…,xn)=xTAx的规范形为________.
设A是n阶实对称矩阵,B,C为n阶矩阵,满足条件 (A+2E)B=O,(A-3E)C=O 且r(B)=r(0<r<n),r(B)+r(C)=n,则二次型f(x1,x2,…,xn)=xTAx的规范形为________.
admin
2022-03-23
61
问题
设A是n阶实对称矩阵,B,C为n阶矩阵,满足条件
(A+2E)B=O,(A-3E)C=O
且r(B)=r(0<r<n),r(B)+r(C)=n,则二次型f(x
1
,x
2
,…,x
n
)=x
T
Ax的规范形为________.
选项
答案
y
1
2
+y
2
2
+…+y
n-r
2
-y
n-r+1
2
-…-y
n
2
解析
因(A+2E)B=O,r(B)=r,则B中列向量组的极大线性无关组向量个数为r,且该极大线性无关组是(A+2E)x=0的解,设为β
1
,β
2
,…,β
r
,也是A的对应于特征值λ=-2的线性无关的特征向量。
又(A-3E)C=O,因r(C)=n-r(B)=n-r,故C中列向量组的极大线性无关组向量个数为n-r,且该极大线性无关组是(A-3E)x=0的解,也是A的对应于特征值λ=3的线性无关的特征向量,记为γ
1
,γ
2
,...,γ
n-r
,故x
T
Ax的正惯性指数为n-r,负惯性指数为γ。
故f(x
1
,x
2
,...,x
n
)=x
T
Ax的规范形为y
1
2
+y
2
2
+…+y
n-r
2
-y
n-r+1
2
-…-y
n
2
。
注意:x
T
Ax的标准形为
3y
1
2
+3y
2
2
+…+3y
n-r
2
-2y
n-r+1
2
-…-2y
n
2
。
不要与规范形相混淆。
转载请注明原文地址:https://kaotiyun.com/show/ZBR4777K
0
考研数学三
相关试题推荐
袋中有5个球,其中白球2个,黑球3个。甲、乙两人依次从袋中各取一球,记A=“甲取到白球”,B=“乙取到白球”。①若取后放回,此时记p1=P(A),p2=P(B);②若取后不放回,此时记p3=P(A),p4=P(B)。则()
设M=,则有
设f(x)=∫0x(ecost-e-cost)dt,则()
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,则随机变量X+Y的分布函数()
设f(x)在x=a连续,φ(x)在x=a间断,又f(a)≠0,则
把当x→0+时的无穷小量α=tanx一x,β=∫0x(1一cos一1排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(ψ(2)=0.977,其中ψ(x)是标准正态分布函数).
设X~U(-1,1),Y=X2,判断X,Y的独立性与相关性.
设f(x)=∫01-cosxsint2dt,,则当x→0时,f(x)是g(x)的().
随机试题
城上斜阳画角哀,________。(陆游《沈园二首》)
计算,D:π2≤x2+y2≤4π2.
急性特发性血小板减少性紫癜出血症状的特点是
急性胰腺炎患者发病之初的3~4小时,最有诊断价值的是
下列属于药品的是
下列各句没有语病的一项是()。
菲律宾海战
列宁称马克思、恩格斯是“19世纪人类三个最先进国家中三种主要思潮的继承人和天才的完成者”。这里“三个最先进国家”指的是()。
(上海财大2013)某公司正考虑如下的投资方案,请计算该投资方案的平均会计收益率。
California,bysomemeasuresAmerica’smost【C1】______state,isatthesametimeitsmostagriculturalstate【C2】______totalfar
最新回复
(
0
)