首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若行列式的每个元素都加1,则行列式值的增量为所有代数余子式之和.
若行列式的每个元素都加1,则行列式值的增量为所有代数余子式之和.
admin
2017-08-18
28
问题
若行列式的每个元素都加1,则行列式值的增量为所有代数余子式之和.
选项
答案
设原来行列式的列向量依次为α
1
,α
2
,…,α
s
,记β=(1,1,…,1)
T
.则改变后的行列式为|α
1
+β,α
2
+β,…,α
s
+β|.对它分解(用性质⑤,先分解第1列,分为2个行列式,它们都对第2列分解,成4个行列式,…)分为2
n
个行列式之和,这些行列式的第j列或为β,或为α
j
,考虑到当有两列为β时值为0,除去它们,|α
1
+β,α
2
+β,…,α
s
+β|是n+1个行列式之和,它们是:恰有1列为β,而其它各列都不是(这样的有n个),还有一个是|α
1
,α
2
,…,α
s
|即原来行列式.于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/aEr4777K
0
考研数学一
相关试题推荐
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
(2005年试题,21)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,求矩阵A;
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
行列式
考虑函数y=sinx,问:(1)t取何值时,图6—17中阴影部分的面积S1和S2之和S=S1+S2最小?(2)t取何值时,面积S=S1+S2最大?
设A为三阶矩阵,A的各行元素之和为4,则A有特征值_________,对应的特征向量为________.
随机试题
排土场安全度一般分为()。
下列关于经常性卫生监督论述错误的是
关于法的适用与法律论证,下列哪些说法是错误的?(2009年卷一第56题)
下列可以消除工作场所中疲劳的途径是()。
某空分厂在停产大修作业时,安全科长甲某审批动火证后,车间主任乙某第二天,持动火证,安排操作工丙进行焊接作业,丙某按工作任务,在地坑附近作业时发生爆燃事故。该起事故认定为责任事故,追究事故相关人员责任。下列责任认定中,错误的是()。
目前,我国银行信贷管理一般实行()相结合制度,以切实防范、控制和化解贷款业务风险。
减免税款:农民增收:安居乐业()
火星上是否有生物存在?长期以来,科学家们争论不休,也曾引起__________。美国和前苏联自20世纪60年代以来进行长期探测,美国先后向火星发射了系列探测器,前苏联也发射过相应的探测器。他们对火星上有巨石人面像、金字塔等类似城市遗迹先是_________
邻近的地主:建在我们土地旁边的庞大的炼铝厂造成的空气污染正在杀死我们的作物。公司发言人:不应该怪罪炼铝厂,因为我们的研究表明,损害是由昆虫和细菌造成的。下面哪项如果正确。最严重地削弱了公司发言人得出的结论?
Inresponsetoscandalsrockingthestudentloanindustry,theHousehasquicklypassedreformlegislationtorequiremorediscl
最新回复
(
0
)