首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
admin
2016-10-26
73
问题
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=
,求:(Ⅰ)Z=XY的概率密度f
Z
(z);(II)V=|X—Y|的概率密度f
V
(v)。
选项
答案
(Ⅰ)依题意P{Y=-1}=[*],X~N(0,1)且X与Y相互独立,于是Z=XY的分布函数为 F
Z
(z)=P{XY≤z}=P{Y=-1}P{XY≤z|Y=-1}+P{Y=1}P{XY≤z|Y=1} =P{Y=-1}P{一X≤z|Y=-1}+P{Y=1}P{X≤z,Y=1} =P{Y=-1}P{X≥一z}+P{Y=1}P{X≤z} [*] 即Z=XY服从标准正态分布,其概率密度为 [*] (Ⅱ)由于V=|X—Y|只取非负值,因此当v<0时,其分布函数F
V
(Ⅴ)=P{|X—Y|≤V}=0;当v≥0时, F
V
(Ⅴ)=P{一v≤X—Y≤v} =P{Y=-1}P{一v≤X—Y≤v|Y=-1}+P{Y=1}P{一v≤X—Y≤v|Y=1} [*] =Ф(v一1)+Ф(v+1)一1. 综上计算可得 [*] 由于F
V
(Ⅴ)是连续函数,且除个别点外,导数存在,因此V的概率密度为 [*]
解析
由于Y为离散型随机变量,X与Y独立,因此应用全概率公式可得分布函数,进而求得概率密度.
转载请注明原文地址:https://kaotiyun.com/show/anu4777K
0
考研数学一
相关试题推荐
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
用泰勒公式求下列极限:
求下列函数的导数:
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为______.
飞机以匀速v沿y轴正向飞行,当飞机行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.(Ⅰ)求导弹运行轨迹满足的微分方程及初始条件;(Ⅱ)求导弹的运行轨迹
随机试题
HaveyoueverhadtodecidewhethertogoshoppingorstayhomeandwatchTVonaweekend?Nowyou【C1】______dobothatthesam
患者男,55岁。黄疸,皮肤瘀斑,慢性重症肝炎。AST70U/L,ALT87U/L,GGT70U/L,ALP170U/L,清蛋白10g/L,球蛋白45g/L,A/G下降,总胆红素53μmol/L,直接胆红素24.5μmol/L。APTT65.5s,
加炼糖或炼蜜制成的半流体制剂含有蔗糖及香料能掩盖药物的不良气味
工程咨询服务项目是工程咨询公司根据客户的某种特定要求,将自己所具有的()等提供给客户的过程。
《建设项目环境风险评价技术导则》不适用()的环境风险评价。
机电工程注册建造师执业的石油化工工程包括()工程。
治安警察是负责维护社会治安秩序,保障公共安全的人民警察。( )
融资租赁的出租人对租赁物享有()。
设关系R和关系S的元数分别是3和4,关系T是R与S的广义笛卡儿积,即:T=R×S,则关系T的元数是______。
AcoupleofyearsagoagroupofmanagementscholarsfromYaleandtheUniversityofPittsburghtriedtodiscoveriftherewasa
最新回复
(
0
)