首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. (1)求矩阵A的全部特征值; (2)求|A*+2E|.
admin
2018-11-11
41
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
.
(1)求矩阵A的全部特征值;
(2)求|A
*
+2E|.
选项
答案
(1)A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)[*],因为ξ
1
,ξ
2
,ξ
3
线性无关,所以(ξ
1
,ξ
2
,ξ
3
)可逆, 故A~[*]=B. 由|λE-A|=|λE-B|=(λ+5)(λ-1)
2
=0,得A的特征值为-5,1,1. (2)因为|A|=-5,所以A
*
的特征值为1,-5,-5,故A
*
+2E的特征值为3,-3,-3.从而|A
*
+2E|=27.
解析
转载请注明原文地址:https://kaotiyun.com/show/bDj4777K
0
考研数学二
相关试题推荐
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2)
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设f(x)在0<|x|<δ时有定义,其中δ为正常数,且
设连续型随机变量X的概率密度为f(x),分布函数为F(x),当x>0时满足xf’(x)=(1一x)f(x),当x≤0时,f(x)=0.问常数a为何值时,概率P{a<X<a+1}最大.
将函数arctanx一x展开成x的幂级数.
设二次型x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2.(Ⅰ)求实数a的值;(Ⅱ)求正交变换χ=Qy将f化为标准形.
随机试题
适宜于治疗致病茵为耐药金黄色葡萄球菌的感染的抗菌药物是
下列哪种心律失常在急性心肌梗死时多见
《环境空气质量标准》(GB3095—1996)中规定,总悬浮颗粒物指能悬浮在空气中,空气动力学当量直径()的颗粒物。
下列属于房产税征收范围的是()。
某国有独资公司曾于2002年发行了三年期的公司债券,但因资金周转不力,直至2006年2月方才还本付息完毕。2006年12月该公司拟再次发行公司债券。由于该公司曾有延迟支付本息的事实,其再次发行公司债券的申请将不会被核准。()
根据下列资料。回答以下问题。以下四项中,2012年六大行业合计在工业企业合计中占比最高的一项是:
试回答有关全球化的如下问题:(1)什么是全球化?其包含哪两个基本方面?(2)全球化的推动力是什么?(3)有人认为“全球化意味着,富国更富,穷国更穷”,对此有何评价?[南开大学2013国际商务硕士]
使用如下的3个数据表:学生、课程和成绩。学生(学号C(8),姓名C(8),性别C(2),班级C(8))课程(课程编号C(8),课程名称C(20))成绩(学号C(8),课程编号C(8
Childrenare【C1】______seriousillnessesbecauseoftheirparentssmokingathome,saysthegovernment’schiefmedicalofficer,
Thepersons______(对孩子们影响最大的)aretheirteachers。
最新回复
(
0
)