首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1= (1)求常数a,b,c; (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1= (1)求常数a,b,c; (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
admin
2018-01-23
91
问题
设A=
的一个特征值为λ
1
=2,其对应的特征向量为ξ
1
=
(1)求常数a,b,c;
(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.若不可对角化,说明理由.
选项
答案
(1)由Aξ
1
=2ξ
1
,得[*] (2)由|λE-A|=[*]=0,得λ
1
=λ
2
=2,λ
3
=-1.由(2E-A)X=0, 得[*] 由(-E-A)X=0,得α
3
=[*] 显然A可对角化,令P=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/cjX4777K
0
考研数学三
相关试题推荐
假设随机变量X在区间[一1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于()
若为随机变量X的概率密度函数,则a=______.
设随机变量X的分布函数f(X)=则P{X=1}=()
设随机变量X的密度函数为fX(x),Y=一2X+3,则Y的密度函数为()
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,X和Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,当x>0时,f(x)>0.证明对任意自然数k,存在ξ∈(0,1),使
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T,对应λ2=λ3=2的一个特征向量为α2=[-1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续.(1)证明f(x)在点x=x0处可导;(2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
随机试题
下列关于烧伤的处理原则的说法,正确的是()。
InBritainpeopledrive______theleft.
下列关于消化道平滑肌生理特性的叙述,正确的是
超急性排斥反应的主要病因是()(2011年)
下列属于房地产估价师的职业道德是()
背景某安装公司承包一项演艺中心的空调工程,演艺中心地处江边(距离江边100m),空调工程设备材料:双工况冷水机组(650Rt)、蓄冰槽、江水源热泵机组、燃气锅炉、低噪声冷却塔(650t/h)、板式热交换机、水泵、空调箱、风机盘管、各类阀门(DN20~DN
选拔会议工作人员时,无需考虑的条件是()。
Theprocessbymeansofwhichhumanbeingsarbitrarilymakecertainthingsstandforotherthingsmaybecalledthesymbolicpro
简述气韵生动。
AgingposesaseriouschallengetoOECD(OrganizationofEconomicCo-operationandDevelopment)countries,inparticular,howto
最新回复
(
0
)