首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
admin
2019-04-08
25
问题
已知线性方程组
的一个基础解系为[b
11
,b
11
,…,b
1,2n
]
T
,[b
21
,b
22
,…,b
2,2n
]
T
,…,[b
n1
,b
n2
,…,b
n,2n
]
T
.试写出下列线性方程组的通解,并说明理由.
[img][/img]
选项
答案
为方便记,对方程组(I)引入如下记号a
i
=[a
i1
,a
i2
,…,a
i,2n
](i=1,2,…,n),则其系数矩阵 [*] A
T
=[a
1
T
,a
2
T
,…,a
n
T
]. 同样,对方程组(Ⅱ)引入记号b
i
=(b
i1
,b
i2
,…,b
i,2n
)(i=1,2,…,n),相应的系数矩阵为 [*] B
T
=[b
1
T
,b
2
T
,…,b
n
T
], 则方程组(I),(Ⅱ)的矩阵形式为AX=0及BY=0. 由题设有b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的一个基础解系,则 A[b
1
T
,b
2
T
,…,b
n
T
]=[0,0,…,0], 即 AB
T
=O, 从而(AB
T
)
T
=BA
T
=O,即B[a
1
T
,a
2
T
,…,a
n
T
]=[0,0,…,0],因而找到了a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的解向量.下面证明这组解向量线性无关,且其向量个数为2n一秩(B),则该组向量就是方程组(Ⅱ)的一组基础解系. 事实上,因b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的基础解系,故其线性无关,且其所含向量个数为n=2n一秩(A),即秩(A)=n,于是a
1
,a
2
,…,a
n
也线性无关,即a
1
T
,a
2
T
,…,a
n
T
也线性无关.又 因b
1
T
,b
2
T
,…,b
n
T
线性无关,故b
1
,b
2
,…,b
n
也线性无关,于是秩(B)=n,即方程组(Ⅱ)的解空间的维数为2n一秩(B)=n. 综上所述,a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的一个基础解系,因而方程组(Ⅱ)的通解为 y=k
1
a
1
T
+k
2
a
2
T
+…+k
n
a
n
T
, 其中k
i
(i=1,2,…,n)为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/dD04777K
0
考研数学一
相关试题推荐
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设已知线性方程组AX=β有解不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设向量场A={xz2+y2,x2y+z2,y2z+x2},求rotA及divA.
随机试题
耐火等级低于四级的既有建筑,其耐火等级可按四级确定。()
接触精度是齿轮的一项制造精度,所以和装配无关。( )
______是公文写作中最常见、最主要的表达方式。
夏商周三代重视民情与舆论的表现是设立了,实行纳谏制度。()
顶推施工中,监理工程师应随时对工作束的( )等施工作业进行必要的监测,以控制施工安全。
甲、乙因合同纠纷申请仲裁。甲、乙各选定一名仲裁员,首席仲裁员由甲乙共同选定。仲裁庭合议时产生了三种不同意见,仲裁庭应当( )作出裁决。
简述在历史教学中,教师如何选取符合教学要求的史料。
Lightpollutionnowhasbecomeabigproblemandledtomuchwasteinoursociety.Ithasbeenestimatedthat30%oftheelectri
Healthcareisanextraordinarilyobsoletesystem.Aprofessorofemergencymedicineatmajoruniversitysentmeareallyheartb
Gotapenhandy?Tobestestimateyourstartupcosts,you’llneedtomakealistandthemoredetailedthebetter.Asmartwayt
最新回复
(
0
)