首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
admin
2019-04-08
46
问题
已知线性方程组
的一个基础解系为[b
11
,b
11
,…,b
1,2n
]
T
,[b
21
,b
22
,…,b
2,2n
]
T
,…,[b
n1
,b
n2
,…,b
n,2n
]
T
.试写出下列线性方程组的通解,并说明理由.
[img][/img]
选项
答案
为方便记,对方程组(I)引入如下记号a
i
=[a
i1
,a
i2
,…,a
i,2n
](i=1,2,…,n),则其系数矩阵 [*] A
T
=[a
1
T
,a
2
T
,…,a
n
T
]. 同样,对方程组(Ⅱ)引入记号b
i
=(b
i1
,b
i2
,…,b
i,2n
)(i=1,2,…,n),相应的系数矩阵为 [*] B
T
=[b
1
T
,b
2
T
,…,b
n
T
], 则方程组(I),(Ⅱ)的矩阵形式为AX=0及BY=0. 由题设有b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的一个基础解系,则 A[b
1
T
,b
2
T
,…,b
n
T
]=[0,0,…,0], 即 AB
T
=O, 从而(AB
T
)
T
=BA
T
=O,即B[a
1
T
,a
2
T
,…,a
n
T
]=[0,0,…,0],因而找到了a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的解向量.下面证明这组解向量线性无关,且其向量个数为2n一秩(B),则该组向量就是方程组(Ⅱ)的一组基础解系. 事实上,因b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的基础解系,故其线性无关,且其所含向量个数为n=2n一秩(A),即秩(A)=n,于是a
1
,a
2
,…,a
n
也线性无关,即a
1
T
,a
2
T
,…,a
n
T
也线性无关.又 因b
1
T
,b
2
T
,…,b
n
T
线性无关,故b
1
,b
2
,…,b
n
也线性无关,于是秩(B)=n,即方程组(Ⅱ)的解空间的维数为2n一秩(B)=n. 综上所述,a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的一个基础解系,因而方程组(Ⅱ)的通解为 y=k
1
a
1
T
+k
2
a
2
T
+…+k
n
a
n
T
, 其中k
i
(i=1,2,…,n)为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/dD04777K
0
考研数学一
相关试题推荐
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵。若A有特征值λ,则(A*)2+E必有特征值______。
已知方程组无解,则a=______。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设已知线性方程组AX=β有解不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
随机试题
张某,女,37岁。久病,皮下发斑,时发时止,伴有鼻衄、齿衄,月经量多,咽干口燥,五心烦热,舌质红,苔少,脉细数。该病中医治法为
患者,女,45岁。患有"慢性支气管炎"病史,近日咽喉肿痛,咳嗽咯黄痰,胸闷气喘,喉中痰鸣。用药首选
患者,女性,32岁。因高热多日入院,护士接诊时发现患者的长发已经纠结成团,为其梳理时可选用
对房地产经纪信息的准确性、真实性、可信性进行分析,判断误差的大小和时效的高低,是房地产经纪信息加工整理过程中()环节的主要内容。[2004年考试真题]
为使垫层混凝土表面高程控制在标准以内,首先要控制好垫层侧模板高程的误差值( ),用水准仪测量。
“长城386微机”中的“386”指的是()。
西周时期婚姻制度的内容不包括()。
计算恒定刺激法实验结果的方法有()
设矩阵则()
Thewordscienceisheardsoofteninmoderntimesthatalmosteverybodyhassomenotionofitsmeaning.Ontheotherhand,its
最新回复
(
0
)