首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,
admin
2019-07-16
26
问题
设有n元实二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,
其中a
i
(i=1,2,…,n)为实数.试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
选项
答案
由题设条件知,对任意的x
1
,x
2
,…,x
n
,有 f(x
1
,x
2
,…,x
n
)≥0 其中等号成立当且仅当 [*] 方程组(*)仅有零解的充分必要条件是其系数行列式不为零,即 [*] =1+(-1)
n+1
a
1
a
2
…a
n
≠0 所以,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,对于任意的不全为零的x
1
,x
2
,…,x
n
,有f(x
1
,x
2
,…,x
n
)>0,即当a
1
,a
2
…,a
n
≠(-1)
n
时,二次型f为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/dNJ4777K
0
考研数学三
相关试题推荐
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设f(x)为二阶可导的偶函数,f(0)=1,f’’(0)=2且f’’(x)在x=0的邻域内连续,则=______.
设f(x)是连续函数.求初值问题的解,其中a>0;
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:ρYZ.
设随机变量X,Y相互独立,且Y~E(4),令U=X+2Y,求U的概率密度.
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,,若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
虚假诉讼是指当事人出于非法的动机和目的,利用法律赋予的诉讼权利,采取虚假的诉讼主体、事实及证据的方法提起民事诉讼,使法院作出错误的判决、裁定、调解,从而侵害国家、集体、他人合法权益或逃避履行法律文书确定的义务的行为。根据上述定义,下列属于虚假诉讼
一平面简谐波沿x轴负向传播,角频率为ψ,波速为u。设t=时的波形如题31图所示。则该波的表达式为()。
下列关于负债和所有者权益的区别表述有误的是( )。
一般来讲国库券的期限为(),发行方式为()
被称为“中国三大名醋”的是()。
莎士比亚的《四大悲剧》是()。
依法从重从快惩处的对象是危害社会治安的犯罪分子。()
元朝的立法指导思想是()。
已知n维向量α1,α2,α3线性无关,证明:3α1+2α2,α2-α3,4α3-5α1线性无关.
Parenthoodisn’tacareer-killer.Infact,economistswithtwoormorekidstendtoproducemoreresearch,notless,thantheir
最新回复
(
0
)