首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值分别为0,1,1, 是A的两个不同的特征向量,且A(α1+α2)=α2. 求方程组Ax=α2的通解;
设三阶实对称矩阵A的特征值分别为0,1,1, 是A的两个不同的特征向量,且A(α1+α2)=α2. 求方程组Ax=α2的通解;
admin
2017-06-14
53
问题
设三阶实对称矩阵A的特征值分别为0,1,1,
是A的两个不同的特征向量,且A(α
1
+α
2
)=α
2
.
求方程组Ax=α
2
的通解;
选项
答案
因为A可对角化,且 [*] 可见秩r(A)=2,于是齐次线性方程组Ax= 0的基础解系所含解向量的个数为3-r(A)=1.而Aα
1
=0.α
1
=0,因此α
1
可作为Ax=0的基础解系,又Aα
2
=α
2
,α
2
是Ax=α
2
的特解.故Ax=α
2
的通解为 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/eZu4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
试述糖皮质激素分泌的调节机制。
《断魂枪》开头的社会环境描写,对后文人物性格的展现所起的主要作用是()
窃以为过矣。过:
A、>2500mlB、>2000mlC、<1500mlD、1000mlE、500ml基础补液量()
甲企业有一项专利权,最初入账价值为100000元,有效使用期限为5年;企业在使用2年后将其对外出售,取得转让收入80000元。甲企业除转让收入按5%缴纳营业税外无其他支出,则甲企业转让该项专利权能使其税前利润增加()元。
下列有关无形资产转让所发生的收支中,其会计处理正确的有()。
国际货币基金组织
Whosebirthdaypartyisthewomangoingto?
OnecountrythatiscertainoftheeffectoffilmsontourismisAustralia.TheTouristOfficeofQueenslandsaythatCrocodile
JapanisintheeastofChina.
最新回复
(
0
)