首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-21
71
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0 且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=x(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)一[*](取其中一个),得 [*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0 (x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
[*],则C=4一a.因此,f(x)=[*]ax
2
+(4一a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*].又f’(x)=3ax+4一a,由此易知一8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[*]ax
2
+(4—a)x]
2
dx =π∫
0
1
[[*]x
4
+x
2
—3x
3
)a
2
+(12x
3
—8x
2
)a+16x
2
]dx=π([*]). (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=一5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/epg4777K
0
考研数学一
相关试题推荐
设f(0)=g(0),f′(0)=g′(0),f″(x)<g″(x)(当x>0时),证明当x>0时,f(x)<g(x).
设S为圆锥面z=被曲面x2+y2=2ax(a>0)所截下部分,则曲面积分I=(xy+yz+zx)dS=__________.
向量v=xi+yi+zk穿过封闭圆锥曲面z2=x2+y2,0≤z≤h的流量等于___________.
设A,B为随机事件满足条件1>P(A)>0,1>P(B)>0,且P(A—B)=0,则成立().
求椭球面x2+2y2+z2=22上平行于平面x—y+2z=0的切平面方程.
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
求方程组的通解,并求满足x2=x3的全部解.
将函数f(x)=在x=0处展成幂级数.
设随机变量X和y的联合分布函数为则随机变量X的分布函数F(x)为______。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
随机试题
接收到的(偶性)汉明码为1001101B,其中的信息为()。
下列关于微动脉的描述,错误的是
骨质疏松症最常见的症状是
A.磺酰脲类B.双胍类C.α-葡萄糖苷酶抑制剂类D.噻唑烷二酮类E.胰岛素衍生物类格列齐特
玉竹粉碎一般采用
围护结构热桥部分的温度值如果()的露点温度,会造成表面结露。
【2015年济南市真题】儿童认识到客体尽管在外形上发生了变化,但其特有的属性不变,这说明儿童的认知发展进入具体运算阶段。()
1931年1月至1935年1月,以王明为代表的“左”倾错误给中国革命带来严重危害,主要错误有()
有以下程序:#include<stdio.h>unsignedfun(unsignednum){unsignedk=1;do{k*=num%10;num/=10;}while(num);
A、Theymakehimfeelgood.B、Theymakenoimpactonhim.C、Theyborehim.D、Theymakehimangry.A[听力原文]HowdoesprofessorHawl
最新回复
(
0
)