已知函数z=f(x,y)可微,f(0,0)=0,fx(0,0)=a,fy(0,0)=b,且g(t)=etf(t,f(t,t)),求g’(0)的值.

admin2022-07-21  34

问题 已知函数z=f(x,y)可微,f(0,0)=0,fx(0,0)=a,fy(0,0)=b,且g(t)=etf(t,f(t,t)),求g’(0)的值.

选项

答案由复合函数求导法则,得 令u=t,v=f(t,t),g(t)=etf(u,v),则 g’(t)=etf(t,f(t,t))+et{f’1[t,f(t,t)]+f’2[t,f(t,t)][f’1(t,t)+f’2(t,t)]} 又f(0,0)=0,fx(0,0)=a,fy(0,0)=b, 所以g’(0)=f[0,f(0,0)]+f’1[0,f(0,0)]+f’2[0,f(0,0)][f’1(0,0)+f’2(0,0)] =f(0,0)+f’1(0,0)+f’2(0,0)[f’1(0,0)+f’2(0,0)] =a+b(a+b)

解析
转载请注明原文地址:https://kaotiyun.com/show/hRR4777K
0

最新回复(0)