首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=______.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=______.
admin
2017-12-31
94
问题
设n维列向量α=(a,0,…,0,a)
T
,其中a<0,又A=E-αα
T
,B=E+
αα
T
,且B为A的逆矩阵,则a=______.
选项
答案
-1
解析
由AB=(E-αα
T
)(E+
αα
T
-αα
T
-2aαα
T
=E且αα
T
≠O,
得
-1-2a=0,解得a=-1.
转载请注明原文地址:https://kaotiyun.com/show/jHX4777K
0
考研数学三
相关试题推荐
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(b)=0.求证:存在η∈(a,b),使ηf(η)+f’(η)=0.
计算
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设矩阵且|A|=一1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(一1,一1,1)T。求a,b,c及λ0的值。
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
A、 B、 C、 D、 C
患儿男性,6岁1个月,主诉“进行性肢体无力7天”。患儿于上呼吸道感染1周后出现下肢无力,逐渐加重,累及上肢,无明显晨轻暮重表现,无尿便障碍。3天前出现语音低,喉中痰响。病程中无抽搐,无头痛、呕吐及精神和意识改变。患儿为足月顺产,既往体健,发育正常,家族史阴
背景资料:某桥梁工程项目的下部结构已全部完成,受政府指令工期的影响,业主将尚未施工的上部结构分成A、B两个标段,将B标段重新招标。桥面宽度为17.5m,桥下净空为6m,上部结构设计为钢筋混凝土预应力现浇箱梁(三跨一联),共40联。原施工单住甲公司承担A标
摩擦引起生热,生热引起燃烧,燃烧引起爆炸——这是一个链条。由此而论()。
就内容而言,社区建设主要是根据本社区成员的需求和愿望。解决本社区问题,为本社区成员提供多样化服务。以上内容体现了社区建设的()特点。
下列关于行政诉讼期间的说法,错误的是()。
宪法的特征包括()。
译后编辑
抗日战争结束后,中国共产党为避免内战,实现和平建国,采取的主要措施有
TheWilliamsburgpackagestresses______.Therateforthepackageisbasedon"doubleoccupancy",whichmeansthat______.
最新回复
(
0
)