首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,n维实的非零列向量ξ1,ξ2,…,ξn,满足ξiTAξi=0(i,j=1,2,…,n;i≠j).证明:向量组毒ξ1,ξ2,…,ξn线性无关.
设A为n阶正定矩阵,n维实的非零列向量ξ1,ξ2,…,ξn,满足ξiTAξi=0(i,j=1,2,…,n;i≠j).证明:向量组毒ξ1,ξ2,…,ξn线性无关.
admin
2019-05-14
21
问题
设A为n阶正定矩阵,n维实的非零列向量ξ
1
,ξ
2
,…,ξ
n
,满足ξ
i
T
Aξ
i
=0(i,j=1,2,…,n;i≠j).证明:向量组毒ξ
1
,ξ
2
,…,ξ
n
线性无关.
选项
答案
设有-组数x
1
,x
2
,…,x
n
,使得x
1
ξ
1
,x
2
ξ
2
,…,x
n
ξ
n
=0,两端左乘ξ
1
T
A,得 x
1
ξ
1
T
Aξ
1
=0,由A正定及ξ
1
≠0,得ξ
1
T
Aξ
1
>0,故x
1
=0,同理可得x
2
=…=x
n
=0,故ξ
1
,ξ
2
,…,ξ
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/jl04777K
0
考研数学一
相关试题推荐
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(其中C1,C2,C3为任意常数)为通解的是()
设单位质点在水平面内做直线运动,初速度v|t=0=v0。已知阻力与速度成正比(比例常数为1),问t为多少时,此质点的速度为,并求到此时刻该质点所经过的路程。
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明xn存在,并求该极限。
设L是柱面方程为x2+y2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分∮Lxzdx+xdy+dz=___________。
设区域D=t(x,y)|x2+y2≤1,x≥0},计算二重积分I=。
将一枚骰子独立地重复掷n次,以Sn表示各次掷出的点数之和.(Ⅰ)证明:当n→+∞时,随机变量Un=的极限分布是标准正态分布;(Ⅱ)为使P{|-3.5|<0.10}≥0.95,至少需要将骰子重复掷多少次?
设二维随机变量(X,Y)服从二维正态分布,其分布参数μ1=μ2=0,σ12=σ22=1,ρ=/2.求证:(Ⅰ)关于X的边缘分布是正态分布;(Ⅱ)在X=χ条件下,关于Y的条件分布也是正态分布.
设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Aχ=0的解,又知Aα2=α1+2α2,Aα3=α1-3α2+2α3.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)判断A是否和对角矩阵相似并说明理由;(Ⅲ
回答下列问题设f(x1,x2,x3)=,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;
下列二次型中,正定二次型是
随机试题
13世纪的______是资产阶级议会的雏形。()
喉腔侧壁有上下2对矢状位的黏膜皱襞,上方称_______,下方称_______。
某孕妇,既往体健,孕34周,主因胸闷、活动后心悸气短1周,近3天症状加重,一般体力活动明显受限,夜间能平卧,偶有憋醒。提示:住院后强心、利尿、地塞米松促胎肺成熟治疗,3天后在硬膜外麻醉下剖宫产术,娩一早产女婴,手术顺利。术后哪些处理是正确的
关于拔牙窝的处理,哪项是错误的()
下列关于刑事诉讼中程序公正含义的表述哪一项不正确?
某商厦1993年10月竣工投入使用。商厦共6层,其中地下2层、地上4层,耐火等级为二级,占地面积3500m2,建筑面积8200m2,高20.4m。商厦地下2层是家具商场和货物仓库,家具商场主要经营红木家具、沙发、席梦思床垫、办公桌椅等;地下1层主要经营副食
在布宜诺斯艾利斯举行的国际奥委会第125次全会通过投票决定,()将成为2020年和2024年夏季奥运会的正式比赛项目。
小明需要拟写一篇会议记录,他需要注意的事项包括哪些?()
以杜威为代表所倡导的教育理论主张被称为()
ThereareseveralwaysinwhichAmericandiningcustomsaredifferentfromthoseinotherpartsoftheworld.Aguestinvitedto
最新回复
(
0
)