首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2016-10-20
58
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0-1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率.注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数P的0-1分布,因此它们的和Y
2
+Y
2
+Y
3
[*]Y服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, (q[*]-P) P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kMT4777K
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
两封信随机地投入4个邮筒,求前两个邮筒没有信的概率及第一个邮筒恰有一封信的概率.
证明[*]
求下列三重积分
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设a,b,c是三角形的三条边的长,A、B、C是三边对应的三个角的度量,试用A,a,b,c表示
写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x,y)处的切线的斜率等于该点的横坐标的平方;(2)曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分;(3)曲线上点P(x,y)处的切线与y轴的交点为Q,线段PQ的长度为2,
设有一物质曲线Γ,在点(x,y,z)处它的线密度为μ(x,y,z),用第一类曲线积分分别表示:(1)该物质曲线关于x轴与y轴的转动惯量;(2)该物质曲线对位于线外点Mo(xo,yo,zo)处的单位质点的引力.
随机试题
现代意义的财产税始创于()
foreigncurrencyreserves
急性失血时,最先出现的代偿反应是
患儿,10岁。课间活动时,突然两眼凝视,呆立不动,呼之不应,持续约10秒后恢复正常。以往有类似发作。考虑为
甲的丈夫强奸了丙,案发后甲多次找到丙,要求丙将强奸说成通奸,并拿出5000元作为给丙的“改口”补偿,丙未同意。甲便将丙拉到家中,强迫丙按照其事先写好的说明是通奸的材料抄写一份并按上指印。丙仍不同意,甲便一直不允许丙离开,4天后丙才被警察解救。关于甲的行为定
国产水准仪按精度不同划分为()个等级。
提高企业经营安全性的途径有()。
在下列描述中,对有效资本市场涵义的描述不正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,计算每名学生所选课程的学分总和,并依次显示“
PeopleinthemassadvertisingbusinessandotherswhostudyAmericansocietyhavebeenveryinterestedinthequestion:Whatdo
最新回复
(
0
)