首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设n阶矩阵 求A的特征值和特征向量;
[2004年] 设n阶矩阵 求A的特征值和特征向量;
admin
2021-01-25
64
问题
[2004年] 设n阶矩阵
求A的特征值和特征向量;
选项
答案
解一 根据A的结构特点:主对角线上的元素全为a=1,非主对角线上的元素全为b,由命题2.5.1.7即得到A的特征值为λ
1
=1+(n-1)b,λ
2
=λ
3
=…=λ
n
=1-b. 解二 [*] 令f(x)=x+1-b,则f(B)=B+(1-b)E.如能求出B的特征值,则f(B)=B+(1-b)E的特征值即可求出.事实上,因秩(B)=1,由命题2.5.1.5即知B的特征值为λ
1
=b+b+…+b=nb,λ
2
=λ
3
=…=λ
n
=0,故f(B)即A=B+(1-b)E的特征值为f(λ
1
)=nb+1-b=(n-1)b+1, f(λ
2
)=f(λ
3
)=…f(λ
n
)=0+(1-b)=1-b. 下面求A的特征向量,首先求属于特征值λ
1
=1+(n-1)b的A的特征向量.由命题2.5.1.4即知α
1
=[1,1,…,1]
T
为属于特征值λ
1
=1+(n一1)b的A的特征向量,所以A的属于λ
1
的全部特征向量为kα
1
(k为非零的任意常数). 再求A的属于特征值λ
2
=λ
3
=…=λ
n
=1-b的特征向量.为此求(λ
2
E—A)X=0的基础解系.对λ
2
E一A以初等行变换,得到 [*] 因而所求的基础解系为 α
2
=[-1,1,0,…,0]
T
, α
3
=[-1,0,1,0,…,0]
T
, …, α
n
=[-1,0,…,0,1]
T
. 故A的属于λ
2
的所有特征向量为 k
2
α
2
+k
3
α
3
+…+k
n
α
n
(k
2
,k
3
,…,k
n
是不全为0的常数). 注:命题2.5.1.4 设n阶矩阵A的各行元素之和为a,则a为A的一个特征值,且A的属于特征值a的一个特征向量为[1,1,…,1]
T
. 命题2.5.1.5 设n阶矩阵A=[a
ij
],若秩(A)=1,则A有n一1个零特征值λ
1
=λ
2
=…=λ
n-1
=0,另一个特征值为λ
n
=a
11
+a
22
+…+a
nn
=tr(A)(称为A的迹). 命题2.5.1.7 设n阶矩阵A的主对角线上元素全为a,非主对角线上元素全为b,则由|A|=[a+(n-1)b](a-n)
n-1
知,A的n个特征值为λ
1
=a+(n-1)b, λ
2
=λ
3
=…=λ
n
=a-b.
解析
转载请注明原文地址:https://kaotiyun.com/show/lMx4777K
0
考研数学三
相关试题推荐
函数f(x,y,z)=-2x2在条件x2-y2-2z2=2下的极大值是_________.
交换积分次序=_______________。
=__________
设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A和B的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A厂生产的概率是________。
若a>0,b>0均为常数,则3/x=______.
某流水线上产品不合格的概率为p=,各产品合格与否相互独立,当检测到不合格产品时即停机检查.设从开始生产到停机检查期间生产的产品数为X,求E(X)及D(X).
(1992年)设其中φ(u,v)有二阶连续偏导数.
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,=P(B|A),则必有
当x→0时,ex—(ax2+bx+1)是比x2高阶的无穷小,则()
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P(|~μ|≥2}≤_______.
随机试题
阅读作品片段,并回答问题:我们可以知道文章有一定的理,没有一定的法。所以我们只略谈原理,不像一般文法修辞书籍,在义法上多加剖析。“大匠能诲人以规矩,不能使人巧。”知道文章作法,不一定就做出好文章。艺术的基本原则是寓变化于整齐,整齐易说,变化则全靠
在各种非创伤性脑出血中占首位的是
健康教育应教育群众如何对待艾滋病病人和艾滋病病毒感染者
F企业的相对市场占有率为()。B企业在做竞争者分析时,可以认为A企业是()型竞争者。
在平面直角坐标系xOy中,已知椭圆C:如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=一3于点D(一3,m).[img][/img]若|OG|2=|OD|·|OE|,①求证:直
在物理学上,把人们引向一个新的王国——微观世界的是()。①居里夫人②爱因斯坦③吉尔伯特④伦琴
全面建设小康社会的重点和难点在于我国科学技术的发展水平和资源的可持续利用。()
科学家们认为,梦是大脑中主管人体各种功能的各个中心点联合作用的结果。人在睡眠时其部分脑细胞仍然在活动着,这就是梦的基础。最近的研究成果证实,做梦不仅不会影响人的睡眠和健康,而且还是保护大脑健康所必需的生理活动之一。以下哪项如果为真,最能支持上述结
下列关于服务器技术的描述中,错误的是()。
【B1】【B5】
最新回复
(
0
)