首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( )
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( )
admin
2019-08-12
55
问题
设y
1
,y
2
是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
一μy
2
是该方程对应的齐次方程的解,则( )
选项
A、
B、
C、
D、
答案
A
解析
由已知条件可得
由λy
1
+μy
2
仍是该方程的解,得(λy
1
’+μy
2
’)+p(x)(λy
1
+μy
2
)=(λ+μ)q(x),则λ+μ=1;由λy
1
一μy
2
是所对应齐次方程的解,得(λy
1
’一μy
2
’)+ρ(x)(λy
1
一μy
2
)=(λ一μ)q(x),那么λ一μ=0。综上所述
转载请注明原文地址:https://kaotiyun.com/show/leN4777K
0
考研数学二
相关试题推荐
假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日无故障,可获利10万元;发生一次故障仍可获利5万元;发生二次故障所获利润O元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕X轴旋转一周所得旋转体的体积.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0的特解。
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
设f(χ)在[0,]上二阶连续可导,且f′(0)=0,证明:存在ξ,η,ζ∈(0,),使得
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为___________.
求不定积分
已知矩形的周长为2p,将它绕其中一边旋转一周而构成一旋转体(圆柱体),求该圆柱体体积最大时的半径与高.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
随机试题
原始凭证审核的主要内容有()。
急性骨髓炎声像图表现为
护士在实施护理的过程中扮演着
甲公司7月1日通过报纸发布广告,称其有某型号的电脑出售,每台售价8000元,随到随购,数量不限,广告有限期至7月30日。乙公司委托王某携带金额16万元的支票于7月28日到甲公司购买电脑,但甲公司称广告所述电脑已全部售完。乙公司为此受到一定的经济损失。根据合
北故宫的主体建筑是(),是皇帝举行重大国典的地方。
现代物流中心作为供货商与销售商之间的纽带,具有()的功能。
随着全面二孩政策的实施,全国多地迎来了二孩生育小高峰,有些高龄产妇宁愿冒风险也要“拼二孩”。还有些育龄妇女由于经济成本高、职场压力大、缺乏家庭支持等原因,不敢生、不愿生。落实二孩政策,需要完善医疗资源、教育资源和相关配套措施,为符合条件的妇女提供社会、家庭
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,联合起来也不充分。已知a,b,
今年是遵义会议召开80周年。中共中央政治局于1935年1月15日至17日在遵义召开扩大会议(史称“遵义会议”)。关于遵义会议,下列表述错误的是()
以下属于对称数字用户线路(SymmetricalDigitalSubscriberLine)的是()。
最新回复
(
0
)