首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
admin
2012-01-29
70
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(1)存在η∈(1/2,1),使f(η)=η;
(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
选项
答案
证:(1)令φ(x)=f(x)-x,则φ(x)在[0,1]上连续,又φ(1)=-1<0,φ(1/2)=1/2>0,故由闭区间上连续函数的介值定理知,存在η∈(1/2,1),使得φ(η)=f(η)-η=0,即f(η)=η. (2)设F(x)=e
-λ
φ(x)=e
-λx
[f(x)-x],则F(x)在[0,η]上连续,在(x,η)内可导,且 F(0)=0,F(η)=e
-λη
φ(η)=0 即F(x)在[x,η]上满足罗尔定理的条件,故存在ε∈(x,η),使得 Fˊ(ε)=0,即e
-λε
{fˊ(ε)-λ[f(ε)-ε]-1}=0 从而fˊ(ε)-λ[fˊ(ε)-ε]=1
解析
转载请注明原文地址:https://kaotiyun.com/show/mqC4777K
0
考研数学二
相关试题推荐
求
0
设函数f与g可微,z=f(xy,g(xy)+lnx),则=___________.
计算二重积分,其中D是由y=|x|与y=2所围成的平面区域.
设积分区域D={(x,y)|x2+y2≤x+y},计算二重积分
设讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解,有无数个解时求通解.
微分方程2yy〞=(yˊ)2的通解为().
设矩阵A=,其中a为常数,R(A)=2,则齐次线性方程组A*x=0的通解x=______________(要求用基础解系表示,不含常数a).
累次积分=______.
随机试题
A.活血祛瘀,固冲安胎B.益气养血,固冲安胎C.补填填精,固冲安胎D.温补肾阳,固冲安胎E.补肾健脾,调理冲任
蠕形螨寄生于
A.推动作用B.营养作用C.气化作用D.防御作用E.固摄作用元气的主要功能是()
下列各项中,属于会计政策变更的是()。(2015年学员回忆版)
(2013年)甲公司为实现多元化经营,决定对乙公司进行长期股权投资。甲公司和乙公司适用的企业所得税税率均为25%,按净利润的10%提取盈余公积。投资业务的相关资料如下: (1)2009年11月10日,甲公司与丙公司签订了收购其持有的乙公司2000万股普
甲汽车租赁公司拟购置一批新车用于出租,现有两种投资方案,相关信息如下:方案一:购买中档轿车100辆,每辆车价格10万元,另需支付车辆价格10%的购置相关税费,每年平均出租300天,日均租金150元/辆,车辆预计使用年限8年,8年后变现价值为0,前
由正脊、四条垂脊、四条戗脊组成的屋顶形式称为()
在社会策划模式实施过程中,自我评估指的是由社会工作者()。
证明:.
在用Open语句打开文件时,如果省略“For方式”,则打开的文件的存在方式是______。
最新回复
(
0
)