首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
admin
2016-10-26
84
问题
解下列微分方程:
(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)y″+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)
+y″+y′+y=0的通解.
选项
答案
(Ⅰ)对应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4, 所以,其通解为[*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*](e
3x
-e
3x
). (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为[*](x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 A=0.B=[*]. 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oTu4777K
0
考研数学一
相关试题推荐
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
随机试题
下列哪项因素能刺激心房钠尿肽的释放
流行性脑脊髓膜炎的病原体是
较早反映肾小球滤过功能减退的检查项目是( )。【历年考试真题】
()是指房屋承租人将承租的房屋再出租的行为。
以下不属于第一人称代词的是()。
互联网电商平台已成为知产权犯罪的高发区域,针对这一现象,阿里巴巴首次聘请10位“特邀知识产权保护监督员”,包括人大代表、政协委员和商家代表,参与电商平台的知识产权保护工作。除了开放电子邮箱统一收集处理监督员反映的情况外,电商平台还制定了监督员履职规则,监督
关于教育的功能,正确的是
Howbeautifullyshesings!Ihaveneverheard______.
From:CorporateRelations-LondonTo:CorporateEmployeesSent:Friday,08April20-12:22:07P.M.Subject:RevisedCodeofEt
FrenchCultureFrenchculturehasbeenknownfortheresilienceofitspeopleandaestheticsenseincinema,cuisineandfashion
最新回复
(
0
)