首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
admin
2019-01-19
109
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
= (1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求:
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
3
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)x=k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,对其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。所以方程组(3)的通解为 x=k(0,一1,0,1,0)
T
,基中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/tBP4777K
0
考研数学三
相关试题推荐
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(χ);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
已知3阶方阵A的行列式|A|=2,方阵B=其中Aij为A的(i,j)元素的代数余子式,求AB.
将下列函数展开为χ的幂级数.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设矩阵A=可逆,向量α=是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a、b和λ的值.
设X和Y是任意两个随机变量,若D(X+Y)=D(X-Y),则
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为_____,最大值为______.
证明方程组有解的必要条件是行列式并举例说明该条件是不充分的.
随机试题
人为的恶意攻击分为被动攻击和主动攻击,在以下的攻击类型中属于主动攻击的是_____。
子宫肌瘤短期内迅速增大或伴有阴道出血应考虑
A.麻醉药品和医疗用毒性药品B.麻醉药品和第二类精神药品C.麻醉药品和第一类精神药品D.第二类精神药品依照《麻醉药品和精神药品管理条例》的规定可以零售的是
破产人所欠职工工资可以优先于破产人所欠税款受偿。()[2015年10月真题]
超载:违章:罚款
林可霉素的抗菌作用是由于抑制了细菌的
高级语言程序编译的过程可以分成千个阶段,其中把单词符号分解成句子属于(5)阶段的工作。
交换两个变量的值,不允许用临时变量,应该使用下列()位运算符。
Whatdoestheprofessorimplywhenhesaysthis:
Whatpercentagedothepoorcountriesaccountforintheworld?
最新回复
(
0
)