首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
用正交变换法化二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3-4x2x3为标准二次型.
admin
2019-08-28
52
问题
用正交变换法化二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
-4x
2
x
3
为标准二次型.
选项
答案
f(x
1
,x
2
,x
3
)=X
T
AX,其中X=[*] 由|λE-A|=[*]=(λ+3)(λ-3)
2
=0得λ
1
=-3,λ
2
=λ
3
=3. 由(-3E-A)X=0得λ
1
=-3对应的线性无关的特征向量为α
1
=[*] 由(3E-A)X=0得λ
2
=λ
3
=3对应的线性无关的特征向量为α
3
=[*],α
3
=[*] 将α
2
,α
3
正交化得β
2
=[*],β
3
=α
3
-[*],单位化得 [*] 则f(x
1
,x
2
,x
3
)=X
T
AX[*]Y
T
(Q
T
AQ)Y=-3y
1
2
+3y
2
2
+3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tvJ4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域.(Ⅰ)求X的概率密度fx(χ);(Ⅱ)求条件概率密度fX|Y(χ|y).
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A、A为同阶可逆矩阵,则()
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,则a的取值范围是_______.
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:A2;
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
下列说法正确的是().
随机试题
痛泻要方中配伍防风的用意是
关于健康教育的概念,下列哪一个是正确的
下列有关民事诉讼时效延长的说法哪些是错误的?()
根据需要的起源,可以把人的需要分为()。
一直以来,世界音乐界认为中国没有多声部的和声艺术,复调音乐仅存于西方。上个世纪50年代,侗族大歌被中国著名音乐家郑律成偶然发现。1986年贵州侗歌合唱团赴法国演出时引起轰动。音乐界惊叹这是中国音乐史上的重大发现,从此改变了中国没有复调音乐的说法。侗族大歌“
凡积分域是由抛物面与其它曲面所围成之形体,一般用柱坐标计算为宜.在[*]
算法的时间复杂度是指()。
Iwasshockedtolearnthatsuchaneminentprofessorwasignoranttoaproverb.
PhyllisWheatleyisregardedasAmerica’sfirstblackpoet.ShewasborninSenegal,Africa,about1753andbroughttoAmericaa
AclassactionlawsuithasbeenfiledagainstaprominentTorontodoctorbypatientswhoallegeheinjectedabannedsubstancei
最新回复
(
0
)