首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ): β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T 与向量组(Ⅱ): α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T 具有相同的秩,且β2可由向量组(Ⅱ)线
已知向量组(Ⅰ): β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T 与向量组(Ⅱ): α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T 具有相同的秩,且β2可由向量组(Ⅱ)线
admin
2017-06-26
41
问题
已知向量组(Ⅰ):
β
1
=(0,1,-1)
T
,β
2
(a,2,1)
T
,β
3
=(6,1,0)
T
与向量组(Ⅱ):
α
1
=(1,2,-3)
T
,α
2
=(3,0,1)
T
,α
3
=(9,6,-7)
T
具有相同的秩,且β
2
可由向量组(Ⅱ)线性表示,求a、b的值.
选项
答案
α
1
,α
2
是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.故(Ⅰ)线性相关,从而行列式|β
1
β
2
β
3
|=0,由此解得a=3b.又β
3
可由(Ⅱ)线性表示,从而β
3
可由α
1
,α
2
线性表示,所以向量组α
1
,α
2
,届线性相关,于是,行列式|α
1
α
2
β
3
|=0,解之得b=5,所以a=15,b=5.
解析
转载请注明原文地址:https://kaotiyun.com/show/uNH4777K
0
考研数学三
相关试题推荐
已知f(x)在x=0的某个邻域内连续,且f(0)=0,,则在点x=0处f(x)().
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设随机变量X的密度函数为且已知,则θ=
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设有无穷级数其α中为常数,则此级数().
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
随机试题
子痫的叙述正确的是()
女性,70岁。主诉轻微骨痛,劳动后加重,被诊断为骨质疏松。目前对患者生活影响最大的危险因素是()。
施工成本计划的编制以( )为基础,关键是确定目标成本。
以下方法反映指标重要性量的差别准确程度的关系为()。
流动性风险主要源于银行自身资产负债结构的错配,突发性事件及信用、市场、操作和声誉等风险之间的转换,或源于市场流动性收紧未能以公允价值变现或质押资产以获得资金。()
A国是亚洲经济发展最快的国家。A国的B省在过去30年间大力发展各类制造及加工业务,成为A国南方沿海经济第一大省。随着B省经济的快速发展,省内几个主要城市均建造了民用机场。近几年,A国政府开始大力推动铁路网络建设,目标是覆盖全国各主要省市。B省亦开始建设通往
下列经济业务所产生的现金流量中,属于“经营活动产生的现金流量”的是()。
从立法、执法、司法的角度,论述权力制约的法治原则。
第八次中国一东盟经贸部长会议于2009年8月15日在泰国首都曼谷召开,双方共同签署了中国一东盟自贸区《投资协议》,标志着中国与东盟历时7年之久的自贸区主要谈判任务已经完成,该协议的重要意义在于()
下列4个选项中,正确的一项是
最新回复
(
0
)