首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
admin
2018-06-14
61
问题
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
选项
答案
X只取0,1,2,3各值,为计算概率P{X=i},i=0,1,2,3,设A
i
={第i个部件需要调整}.i=1,2,3.依题意,A
1
,A
2
,A
3
相互独立,且P(A
1
)=0.1,P(A
2
)=0.2,P(A
3
)=0.3. P{X=0}=[*]=0.9×0.8×0.7=0.504, P{X=3}=P(A
1
,A
2
,A
3
)= P(A
1
) P(A
2
) P(A
3
)=0.1×0.2×0.3=0.006, P{X=1}=[*] =0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398. P{X=2}=1一P{X=0}一P{X=1}一P{X=3}=0.092. 于是X的分布函数F(x)为 F(x)=P{X≤x}=[*]
解析
显然X是离散型随机变量,为求X的分布函数F(x),我们应首先求出X的分布律,即X的所有可能取值与相应概率.
转载请注明原文地址:https://kaotiyun.com/show/vBW4777K
0
考研数学三
相关试题推荐
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:(1)试当n=1500时求舍位误差之和的绝对值大于15的概率;(2)估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
某商品一周的需求量X是随机变量,已知其概率密度为假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:(1)U2和U3的概率密度fk(x)(k=2,3);(2)接连三周中的周最大需求量的概率密度f(3)(x).
设X1,X2是来自总体N(0,σ2)的简单随机样本,则查表得概率等于__________.
用概率论方法证明:
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xk,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值,使用
设X1,X2,…,Xn是总体N(μ,σ2)的样本,是样本均值,记则服从自由度为n-1的t分布的随机变量是()
设随机变量X在[0,π]上服从均匀分布,求Y=sinX的密度函数.
设随机变量X的概率密度为求y=sinX的概率密度.
设随机变量X的概率密度为求X的分布函数.
随机试题
脑干不包括
法院对于诉讼中有关情况的处理,下列哪一做法是正确的:()
以下各项中影响名义利息率的因素有()。
某联合企业为增值税一般纳税人,2006年5月生产经营情况如下:(1)专门开采的天然气45000千立方米,开采原煤450万吨,采煤过程中生产天然气2800千立方米。(2)销售原煤280万吨,取得不含税销售额22400万元。(3)以原煤
教学过程的基本矛盾是()。
某市多次发生盗窃和抢劫案件,“十一”期间,派出所民警高某与孙某上街巡逻,将嫌疑人姚某抓获,带回派出所进行安全检查时,两人在姚某的背包中发现管制刀具一把、染血棉手套一副、鞭炮一挂、雨伞一把。下列选项中,哪项对物品的处理不合法?()
[*]
WriteanessaybasedonthechartInyourwriting,youshould1)interpretthechart,and2)giveyourcomments.Y
Oncorporatenetwork,hostsonthesameVLANcancommunicatewitheachother,buttheyareunabletocommunicatewithhostsond
To:GertrudeGerlakFrom:PingLaiSubject:RetirementpartyHiGertrude,Don’tforgetthatSamir’spartyistomorrownightat
最新回复
(
0
)